Skip to content
Snippets Groups Projects
cost_model.py 30.8 KiB
Newer Older
xuanyoya's avatar
xuanyoya committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
'''
Cost model.
'''
#import numpy as np
from operator import mul
from operator import add
import copy
import math

import loop_enum as le
import buffer_enum as be


def get_comp_cost(layer):
    '''
    Compute the computation cost, it is indepdent of other optimizations
    '''
    cost = layer.wofm * layer.hofm * layer.nifm * layer.nofm \
           * layer.nimg * layer.wfil * layer.hfil 
    return cost


def get_ideal_performance(layer, resource):
    '''
    Compute the ideal runtime in cycles, assuming overhead of data fetching
    '''
    total_comp = get_comp_cost(layer)
    number_pe = reduce(mul, resource.para_count_list, 1)
    runtime = math.ceil(total_comp *1.0 / number_pe)

    return runtime


def get_layer_size(layer):
    '''
    Get size of ifmap, ofmap, filter of the layer 
    '''

    ifmap_size = layer.wifm * layer.hifm * layer.nifm * layer.nimg
    ofmap_size = layer.wofm * layer.hofm * layer.nofm * layer.nimg
    flmap_size = layer.wfil * layer.hfil * layer.nifm * layer.nofm
 
    return [ifmap_size, ofmap_size, flmap_size]


def get_hinted_para(level, hint):
    assert hint    

    hinted_para = 1
    for loop in xrange(le.NUM):
        if loop in hint:
            hinted_loop_para = hint[loop][level][2]
            hinted_para *= hinted_loop_para

    return hinted_para


def valid_dataflow(resource, hint):
    num_levels = resource.buffer_levels()    

    for level in xrange(num_levels):
        if resource.paras[level].count != 1 and \
            get_hinted_para(level, hint) < (resource.paras[level].count * resource.utilization_threshold):
            return False

    return True

def get_if_access(level, point, layer, mac_capacity = 1):
    '''
    Get # access of if block at current level

    The repeated access to ifmap is determined by the blocking factors and
    parallelism counts of those loops other than ifmap-related loops outside of
    this level.

    At the same buffer level, if the other loops are outside of the innermost
    loop of ifmap-related loops, their blocking factors and parallelism counts
    at this level should also contribute to the number of accesses.
    '''

    if level == 0 and mac_capacity == 0:
        return layer.wfil * layer.hfil * layer.nofm / (layer.wstd * layer.hstd)
    
    ex_order_index = min(point.loop_orders[le.OX][level], 
        point.loop_orders[le.OY][level], 
        point.loop_orders[le.IC][level], 
        point.loop_orders[le.ON][level])

    fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index
    fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index
    oc_exclusive = point.loop_orders[le.OC][level] < ex_order_index

    fx_acc = reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) 
    fy_acc = reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) 
    oc_acc = reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) 

    # No loop orders among unrolled loops, they have the same order 
    fx_par = reduce(mul, point.loop_partitionings[le.FX][level:], 1) 
    fy_par = reduce(mul, point.loop_partitionings[le.FY][level:], 1) 
    oc_par = reduce(mul, point.loop_partitionings[le.OC][level:], 1) 

    return fx_acc * fy_acc * oc_acc * fx_par * fy_par * oc_par / (layer.wstd * layer.hstd)


def get_of_access(level, point, layer, mac_capacity = 1):
    '''
    Get # access of of block at current level

    See comments in routine for ifmap.
    '''

    if level == 0 and mac_capacity == 0 :
        return layer.wfil * layer.hfil * layer.nifm

    ex_order_index = min(point.loop_orders[le.OX][level], 
        point.loop_orders[le.OY][level], 
        point.loop_orders[le.OC][level], 
        point.loop_orders[le.ON][level])

    fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index
    fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index
    ic_exclusive = point.loop_orders[le.IC][level] < ex_order_index

    fx_acc = reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) 
    fy_acc = reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) 
    ic_acc = reduce(mul, point.loop_blockings[le.IC][level+ic_exclusive:], 1) 

    fx_par = reduce(mul, point.loop_partitionings[le.FX][level:], 1) 
    fy_par = reduce(mul, point.loop_partitionings[le.FY][level:], 1) 
    ic_par = reduce(mul, point.loop_partitionings[le.IC][level:], 1) 

    return fx_acc * fy_acc * ic_acc * fx_par * fy_par * ic_par
   
        
def get_fl_access(level, point, layer, mac_capacity = 1):
    '''
    Get # access of fl block at current level

    See comments in routine for ifmap.
    '''

    if level == 0 and mac_capacity == 0:
        return layer.wofm * layer.hofm * layer.nimg

    ex_order_index = min(point.loop_orders[le.FX][level], 
        point.loop_orders[le.FY][level], 
        point.loop_orders[le.IC][level], 
        point.loop_orders[le.OC][level])

    ox_exclusive = point.loop_orders[le.OX][level] < ex_order_index
    oy_exclusive = point.loop_orders[le.OY][level] < ex_order_index
    on_exclusive = point.loop_orders[le.ON][level] < ex_order_index

    ox_acc = reduce(mul, point.loop_blockings[le.OX][level+ox_exclusive:], 1) 
    oy_acc = reduce(mul, point.loop_blockings[le.OY][level+oy_exclusive:], 1)
    on_acc = reduce(mul, point.loop_blockings[le.ON][level+on_exclusive:], 1) 

    ox_par = reduce(mul, point.loop_partitionings[le.OX][level:], 1) 
    oy_par = reduce(mul, point.loop_partitionings[le.OY][level:], 1) 
    on_par = reduce(mul, point.loop_partitionings[le.ON][level:], 1) 

    return ox_acc * oy_acc * on_acc * ox_par * oy_par * on_par


def opt_get_if_access(level, point, ba_arr, pa_arr):
    '''
    Get # access of if block at current level

    The repeated access to ifmap is determined by the blocking factors and
    parallelism counts of those loops other than ifmap-related loops outside of
    this level.

    At the same buffer level, if the other loops are outside of the innermost
    loop of ifmap-related loops, their blocking factors and parallelism counts
    at this level should also contribute to the number of accesses.
    '''
    
    ex_order_index = min(point.loop_orders[le.OX][level], 
        point.loop_orders[le.OY][level], 
        point.loop_orders[le.IC][level], 
        point.loop_orders[le.ON][level])

    fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index
    fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index
    oc_exclusive = point.loop_orders[le.OC][level] < ex_order_index

    fx_acc = ba_arr[le.FX][level+fx_exclusive] #reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) 
    fy_acc = ba_arr[le.FY][level+fy_exclusive] #reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) 
    oc_acc = ba_arr[le.OC][level+oc_exclusive] #reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) 

    fx_par = pa_arr[le.FX][level] #reduce(mul, point.loop_partitionings[le.FX][level+fx_exclusive:], 1) 
    fy_par = pa_arr[le.FY][level] #reduce(mul, point.loop_partitionings[le.FY][level+fy_exclusive:], 1) 
    oc_par = pa_arr[le.OC][level] #reduce(mul, point.loop_partitionings[le.OC][level+oc_exclusive:], 1) 

    return fx_acc * fy_acc * oc_acc * fx_par * fy_par * oc_par 


def opt_get_of_access(level, point, ba_arr, pa_arr):
    '''
    Get # access of of block at current level

    See comments in routine for ifmap.
    '''

    ex_order_index = min(point.loop_orders[le.OX][level], 
        point.loop_orders[le.OY][level], 
        point.loop_orders[le.OC][level], 
        point.loop_orders[le.ON][level])

    fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index
    fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index
    ic_exclusive = point.loop_orders[le.IC][level] < ex_order_index

    #TODO
    fx_acc = ba_arr[le.FX][level+fx_exclusive] #reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) 
    fy_acc = ba_arr[le.FY][level+fy_exclusive] #reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) 
    ic_acc = ba_arr[le.IC][level+ic_exclusive] #reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) 

    fx_par = pa_arr[le.FX][level] #reduce(mul, point.loop_partitionings[le.FX][level+fx_exclusive:], 1) 
    fy_par = pa_arr[le.FY][level] #reduce(mul, point.loop_partitionings[le.FY][level+fy_exclusive:], 1) 
    ic_par = pa_arr[le.IC][level] #reduce(mul, point.loop_partitionings[le.OC][level+oc_exclusive:], 1) 


    return fx_acc * fy_acc * ic_acc * fx_par * fy_par * ic_par
   
        
def opt_get_fl_access(level, point, ba_arr, pa_arr):
    '''
    Get # access of fl block at current level

    See comments in routine for ifmap.
    '''

    ex_order_index = min(point.loop_orders[le.FX][level], 
        point.loop_orders[le.FY][level], 
        point.loop_orders[le.IC][level], 
        point.loop_orders[le.OC][level])

    ox_exclusive = point.loop_orders[le.OX][level] < ex_order_index
    oy_exclusive = point.loop_orders[le.OY][level] < ex_order_index
    on_exclusive = point.loop_orders[le.ON][level] < ex_order_index

    ox_acc = ba_arr[le.OX][level+ox_exclusive] #reduce(mul, point.loop_blockings[le.OX][level+ox_exclusive:], 1) 
    oy_acc = ba_arr[le.OY][level+oy_exclusive] #reduce(mul, point.loop_blockings[le.OY][level+oy_exclusive:], 1)
    on_acc = ba_arr[le.ON][level+on_exclusive] #reduce(mul, point.loop_blockings[le.ON][level+on_exclusive:], 1) 

    ox_par = pa_arr[le.OX][level] #reduce(mul, point.loop_partitionings[le.OX][level+ox_exclusive:], 1) 
    oy_par = pa_arr[le.OY][level] #reduce(mul, point.loop_partitionings[le.OY][level+oy_exclusive:], 1) 
    on_par = pa_arr[le.ON][level] #reduce(mul, point.loop_partitionings[le.ON][level+on_exclusive:], 1) 

    return ox_acc * oy_acc * on_acc * ox_par * oy_par * on_par



def get_if_size(blocking_accum_list, partitioning_accum_list, partitioning_list, layer):
    '''
    Get size of if block at current level
    '''
 
    fx_acc = blocking_accum_list[le.FX] * partitioning_accum_list[le.FX] 
    fy_acc = blocking_accum_list[le.FY] * partitioning_accum_list[le.FY] 
    ox_acc = blocking_accum_list[le.OX] * partitioning_accum_list[le.OX]
    oy_acc = blocking_accum_list[le.OY] * partitioning_accum_list[le.OY]
    width = fx_acc + (ox_acc - 1) * layer.wstd
    height = fy_acc + (oy_acc - 1) * layer.hstd

    return width * height * \
    blocking_accum_list[le.IC] * partitioning_accum_list[le.IC] * \
    blocking_accum_list[le.ON] * partitioning_accum_list[le.ON] * \
    partitioning_list[le.OC] # Duplication when OC partitions

def get_of_size(blocking_accum_list, partitioning_accum_list, partitioning_list):
    '''
    Get size of of block at current level
    '''
 
    return blocking_accum_list[le.OX] * partitioning_accum_list[le.OX] * \
    blocking_accum_list[le.OY] * partitioning_accum_list[le.OY] * \
    blocking_accum_list[le.OC] * partitioning_accum_list[le.OC] * \
    blocking_accum_list[le.ON] * partitioning_accum_list[le.ON] * \
    partitioning_list[le.IC] * partitioning_list[le.FX] * \
    partitioning_list[le.FY]  # Duplication when IC, FX or FY partitions
   
        
def get_fl_size(blocking_accum_list, partitioning_accum_list, partitioning_list):
    '''
    Get size of fl block at current level
    '''
 
    return blocking_accum_list[le.FX] * partitioning_accum_list[le.FX] * \
    blocking_accum_list[le.FY] * partitioning_accum_list[le.FY] * \
    blocking_accum_list[le.IC] * partitioning_accum_list[le.IC] * \
    blocking_accum_list[le.OC] * partitioning_accum_list[le.OC] * \
    partitioning_list[le.OX] * partitioning_list[le.OY] *\
    partitioning_list[le.ON] # Duplication when OX, OY or ON partitions 

def get_if_bank_size(blocking_accum_list, layer):
    '''
    Get size of if block at current level
    '''
 
    fx_acc = blocking_accum_list[le.FX]  
    fy_acc = blocking_accum_list[le.FY] 
    ox_acc = blocking_accum_list[le.OX] 
    oy_acc = blocking_accum_list[le.OY] 
    width = fx_acc + (ox_acc - 1) * layer.wstd
    height = fy_acc + (oy_acc - 1) * layer.hstd

    return width * height * \
    blocking_accum_list[le.IC] * blocking_accum_list[le.ON] 

def get_of_bank_size(blocking_accum_list):
    '''
    Get size of of block at current level
    '''
 
    return blocking_accum_list[le.OX] * blocking_accum_list[le.OY] * \
    blocking_accum_list[le.OC] *blocking_accum_list[le.ON]  
   
        
def get_fl_bank_size(blocking_accum_list):
    '''
    Get size of fl block at current level
    '''
 
    return blocking_accum_list[le.FX] * blocking_accum_list[le.FY] * \
    blocking_accum_list[le.IC] * blocking_accum_list[le.OC] 


def get_array_access_and_cost(level, para, access_list, point):
    '''
    Get the access at array level from the access at the 
    lower level of memory hierachy
    '''

    para_mode = para.access_mode
    assert para_mode == 1 or para_mode == 2

    array_dim = para.array_dim
    para_count = para.array_width
    para_cost = para.array_access_cost * 1.0
    nearest_pe_cost = para_cost 
 
    [if_block_access, of_block_access, fl_block_access] = access_list
    partitions = zip(*point.loop_partitionings)[level]
    para_dim = point.para_loop_dim[level]

    partitions_nearest = [1,]*le.NUM
    partitions_far = []
    across_block_cost = [0]*array_dim
   
    if para_mode == 1:
        for i in xrange(len(para_dim)):
            para_index = para_dim[i]
            partitions_far.append([1,]*le.NUM)
            if len(para_index) == 1:
                partitions_nearest[para_index[0]] = partitions[para_index[0]]
            else:
                inner_loop, outer_loop = para_index  
                partitions_nearest[inner_loop] = partitions[inner_loop] 
                partitions_far[i][outer_loop] = partitions[outer_loop]
                across_block_cost[i] = para_cost * partitions[inner_loop] 
    
        array_if_block_access_nearest = if_block_access  * partitions_nearest[le.FX] * \
                                partitions_nearest[le.FY] * partitions_nearest[le.OC]
        array_of_block_access_nearest = of_block_access  * partitions_nearest[le.FX] * \
                                partitions_nearest[le.FY] * partitions_nearest[le.IC]
        array_fl_block_access_nearest = fl_block_access  * partitions_nearest[le.OX] * \
                                partitions_nearest[le.OY] * partitions_nearest[le.ON]
    
        array_access = [[array_if_block_access_nearest, array_of_block_access_nearest, array_fl_block_access_nearest]]
    
        for i in xrange(array_dim):
            if_partitions_far = partitions_far[i][le.FX] * partitions_far[i][le.FY] * partitions_far[i][le.OC]
            if_partitions_far = if_partitions_far if if_partitions_far != 1 else 0   
            of_partitions_far = partitions_far[i][le.FX] * partitions_far[i][le.FY] * partitions_far[i][le.IC]
            of_partitions_far = of_partitions_far if of_partitions_far != 1 else 0   
            fl_partitions_far = partitions_far[i][le.OX] * partitions_far[i][le.OY] * partitions_far[i][le.ON]
            fl_partitions_far = fl_partitions_far if fl_partitions_far != 1 else 0   
             
            if_array_block_access = if_block_access * if_partitions_far
            of_array_block_access = of_block_access * of_partitions_far
            fl_array_block_access = fl_block_access * fl_partitions_far
            
            array_access.append([if_array_block_access, of_array_block_access, fl_array_block_access])
    
        return [array_access, [nearest_pe_cost] + across_block_cost]

    elif para_mode == 2:
        for i in xrange(len(para_dim)):
            para_index = para_dim[i]
            for j in para_index:
                partitions_nearest[j] = partitions[j]
    
        array_if_block_access_nearest = if_block_access  * partitions_nearest[le.FX] * \
                                partitions_nearest[le.FY] * partitions_nearest[le.OC]
        array_of_block_access_nearest = of_block_access  * partitions_nearest[le.FX] * \
                                partitions_nearest[le.FY] * partitions_nearest[le.IC]
        array_fl_block_access_nearest = fl_block_access  * partitions_nearest[le.OX] * \
                                partitions_nearest[le.OY] * partitions_nearest[le.ON]
    
        array_access = [[array_if_block_access_nearest, array_of_block_access_nearest, array_fl_block_access_nearest]]
    
        return [array_access, [nearest_pe_cost]]



def get_access(point, layer, resource):
    '''
    Get the total access of each block at each level,
    return the list as 
    [[if_block_access, of_block_access, fl_block_access], ...].
 
    Assume all the buffers are inclusive, so buffers in lower level 
    appear in higher level as well.

    For the parallelism case assume read from next memory level,
    
    Support more access modes in parallelism case
    '''
    #TODO support more customized memory
    #TODO more access at overlapped boundary
   
 
    num_levels = resource.buffer_levels()
    mac_capacity = resource.mac_capacity

    access_list = []
    for level in xrange(num_levels):
        if_block_access = get_if_access(level, point, layer, mac_capacity)
        of_block_access = 2 * get_of_access(level, point, layer, mac_capacity) - 1 
        fl_block_access = get_fl_access(level, point, layer, mac_capacity)
        access_list.append([if_block_access, of_block_access, fl_block_access])

    #para_mode = [e.access_mode for i, e in enumerate(resource.paras) if e.access_mode != 0]
    para_mode_level = [i for i, e in enumerate(resource.paras) if e.access_mode != 0]
    partitions = zip(*point.loop_partitionings)
    array_costs = []
    if para_mode_level:
        # access at array level 
        #para_mode_level = [i for i, e in enumerate(resource.paras) if e.access_mode != 0]
        delta = 0
        for level in para_mode_level:
            if level + delta + 1 >= num_levels :
                next_level_access = [1, 1, 1]
            else:
                next_level_access = copy.copy(access_list[level + delta + 1])
                next_level_access[1] = (next_level_access[1] + 1)/2 
            array_access, array_cost = get_array_access_and_cost(level, resource.paras[level], next_level_access, point) 
            array_costs.append(array_cost)
            access_list.insert(level + delta + 1, array_access)
            delta += 1
 
    return [access_list, array_costs]

def opt_get_access(num_levels, point, mac_capacity):
    '''
    See the above function's comments. This function is just an
    optimized version of the above function 
    '''
    ''' blocking_accum_arr is reversed cumprod numpy array '''
    #TODO support mac_capacity

    #blocking_arr = np.ones((le.NUM, num_levels+1))
    #partitioning_arr = np.ones((le.NUM, num_levels+1))

    #blocking_arr[:,:-1] = np.array(point.loop_blockings)
    #partitioning_arr[:,:-1] = np.array(point.loop_partitionings)

    #blocking_accum_arr = np.ones((le.NUM, num_levels+1)) 
    #partitioning_accum_arr = np.ones((le.NUM, num_levels+1)) 

    #for i in xrange(le.NUM):
    #    blocking_accum_arr[i][:-1] = np.cumprod(blocking_arr[i][::-1])[::-1] 
    #    partitioning_accum_arr[i][:-1] = np.cumprod(partitioning_arr[i][::-1])[::-1] 

    #blocking_accum_arr = blocking_arr[...,::-1].cumprod(axis=-1)[...,::-1]
    #partitioning_accum_arr = partitioning_arr[...,::-1].cumprod(axis=-1)[...,::-1]

    #blocking_accum_arr = np.hstack((blocking_accum_arr, np.ones((le.NUM, 1))))
    #partitioning_accum_arr = np.hstack((partitioning_accum_arr, np.ones((le.NUM, 1))))


    blocking_accum_arr = []
    partitioning_accum_arr = []
    for i in xrange(le.NUM):
        ba_current_level = [1]
        pa_current_level = [1] 
        ba_tmp = 1
        pa_tmp = 1
        for level in xrange(num_levels-1, -1, -1):
            ba_tmp = ba_tmp * point.loop_blockings[i][level]
            pa_tmp = pa_tmp * point.loop_partitionings[i][level]
            ba_current_level.append(ba_tmp)
            pa_current_level.append(pa_tmp)
   
        blocking_accum_arr.append(ba_current_level[::-1])
        partitioning_accum_arr.append(pa_current_level[::-1])
 
    access_arr = np.zeros((num_levels, 3))
    for level in xrange(num_levels):
        access_arr[level][0] = opt_get_if_access(level, point, blocking_accum_arr, partitioning_accum_arr) 
        access_arr[level][1] = 2 * opt_get_of_access(level, point, blocking_accum_arr, partitioning_accum_arr) - 1 
        access_arr[level][2] = opt_get_fl_access(level, point, blocking_accum_arr, partitioning_accum_arr) 
    
    return access_arr

def get_bank_size(point, layer, level):

    blocking_accum_list = []
    for i in xrange(le.NUM):
        blocking_accum_list.append(reduce(mul, point.loop_blocking(i)[:level+1], 1))

    if_bank_size = get_if_bank_size(blocking_accum_list, layer)
    of_bank_size = get_of_bank_size(blocking_accum_list)
    fl_bank_size = get_fl_bank_size(blocking_accum_list)

    return (if_bank_size, of_bank_size, fl_bank_size)

def get_block_size(point, layer, level):

    blocking_accum_list = []
    partitioning_accum_list = []
    partitioning_reshape = zip(*point.loop_partitionings)
    partitioning_list = partitioning_reshape[level]
    for i in xrange(le.NUM):
        blocking_accum_list.append(reduce(mul, point.loop_blocking(i)[:level+1], 1))
        partitioning_accum_list.append(reduce(mul, point.loop_partitioning(i)[:level+1], 1)) #FIXME inclusive mode also duplicates data
    
    if_block_size = get_if_size(blocking_accum_list, partitioning_accum_list, partitioning_list, layer)
    of_block_size = get_of_size(blocking_accum_list, partitioning_accum_list, partitioning_list)
    fl_block_size = get_fl_size(blocking_accum_list, partitioning_accum_list, partitioning_list)

    return (if_block_size, of_block_size, fl_block_size)



def get_block_sizes(num_levels, point, layer):
    '''
    Get size of ifmap, ofmap, filter 
    '''
    bank_list = []
    block_list = []
    for level in xrange(num_levels):
        block_list.append(get_block_size(point, layer, level))
        bank_list.append(get_bank_size(point, layer, level))

    return [bank_list, block_list]

def fit_in_level(cap, blocks, invalid_underutilized):
    total_size = sum(blocks)
    if invalid_underutilized:
        return (total_size <= cap) and (2*total_size >= cap)
    else:
        return (total_size <= cap) 
 
def valid_partition_number(resource, partitioning, level):
    max_parallelism = resource.parallelism(level).count
    actual_parallelism = reduce(mul, partitioning[level], 1)
    return actual_parallelism <= max_parallelism  

def valid_partitioning_current_level(resource, point, layer, level, verbose=False):
    valid_size = fit_in_level(resource.buffer(level).capacity, \
             get_bank_size(point, layer, level), True) 

    return valid_size 

def valid_mapping_point_current_level(resource, point, layer, level, verbose=False):
    if resource.paras[level].count > 1:
        valid_size = fit_in_level(resource.buffer(level).capacity, 
             get_bank_size(point, layer, level)) 
    else :
        valid_size = fit_in_level(resource.buffer(level).capacity, 
             get_block_size(point, layer, level)) 

    partitioning = zip(*(point.loop_partitionings)) 
    valid_para = valid_partition_number(resource, partitioning, level)    

    if verbose == 3:
        print "Level ", level, ": Partitioned block size fit in bank: ", valid_size
        print "Level ", level, ": Partition number is valid: ", valid_para
    
    return valid_size and valid_para 

def valid_partitioning(resource, point, layer, verbose=False):
    para_level = resource.para_index 
    for level in para_level:
        if not valid_partitioning_current_level(resource, point, layer, level, verbose):
            return False
    return True

def valid_blocking_size_current_level(resource, point, layer, level, verbose=False):
    if level == resource.buffer_levels()-1:
        return True
    return fit_in_level(resource.buffer(level).capacity * resource.paras[level].count, 
        get_block_size(point, layer, level), (level not in resource.para_index))
        #get_block_size(point, layer, level), (level > min(resource.para_index)))


def valid_blocking_size(resource, point, layer, verbose=False):
    for level in xrange(resource.buffer_levels()):
        if not valid_blocking_size_current_level(resource, point, layer, level, verbose):
            return False
    return True 


def valid_mapping_point(resource, point, layer, verbose=False):
    for i in xrange(resource.buffer_levels()):
        if not valid_mapping_point_current_level(resource, point, layer, i, verbose):
            return False
    return True

def get_total_access_cost(resource, array_cost):
    total_access_cost = copy.deepcopy(resource.access_cost)

    if not resource.array_access_cost: 
        return total_access_cost

    para_index = [i for i, e in enumerate(resource.paras) if e.access_mode != 0]
    addition_levels = len(para_index)

    delta = 1
    for i in xrange(addition_levels):
        index = para_index[i]
        total_access_cost.insert(index+delta, array_cost[i])
        delta += 1
    return total_access_cost 

def get_array_level_cost(resource, point, layer_size, level, next_level_access, verbose=False):
    #TODO add support for other access_mode
   
    assert resource.paras[level].count and resource.paras[level].access_mode

    level_access, level_cost = get_array_access_and_cost(level, resource.paras[level], next_level_access, point) 

    total_cost = 0
    for i in xrange(len(level_access)):
        buffer_access = map(mul, level_access[i], layer_size)
        total_cost += sum(buffer_access) *level_cost[i]

    if verbose >= 3:
        print "Level ", level, " array level access: ", level_access 
 
    return total_cost


def get_array_and_curr_level_cost(resource, point, layer, level, verbose=False):
    layer_size = get_layer_size(layer)
    mac_capacity = resource.mac_capacity
   
    level_access = [get_if_access(level, point, layer, mac_capacity), \
                    get_of_access(level, point, layer, mac_capacity), \
                    get_fl_access(level, point, layer, mac_capacity)] 

    [if_access, of_access, fl_access] = level_access 

    buffer_level_access = [if_access, 2*of_access-1, fl_access]
    total_buffer_access = map(mul, buffer_level_access, layer_size)
    level_cost = sum(total_buffer_access) * resource.access_cost[level]

    if verbose >= 3:
        print "Level ", level, " access: ", buffer_level_access 
 
    level_cost += get_array_level_cost(resource, point, layer_size, level-1, level_access, verbose)

    return level_cost

    
def get_level_cost(resource, point, layer, level, verbose=False):
    layer_size = get_layer_size(layer)
    mac_capacity = resource.mac_capacity

    level_access = [get_if_access(level, point, layer, mac_capacity), \
                    2 * get_of_access(level, point, layer, mac_capacity) - 1, \
                    get_fl_access(level, point, layer, mac_capacity)] 

    buffer_access = map(mul, level_access, layer_size)
    level_cost = sum(buffer_access) * resource.access_cost[level]

    if verbose >= 3:
        print "Level ", level, " access: ", level_access 
    return level_cost


def get_total_access(resource, point, layer, verbose=False):
    layer_size = get_layer_size(layer)

    access_list, array_cost  = get_access(point, layer, resource)

    if verbose >= 3:
        print "access breakdown: ", access_list 

    total_level_access = []
    for i in xrange(len(access_list)):
        ''' List of total access of each buffer at level i'''
        if not isinstance(access_list[i][0], list):
            buffer_access = map(mul, access_list[i], layer_size)
            total_level_access.append(sum(buffer_access))
        else :
            for j in xrange(len(access_list[i])):
                buffer_access = map(mul, access_list[i][j], layer_size)
                total_level_access.append(sum(buffer_access))

    return total_level_access



def get_level_costs(resource, point, layer, verbose=False):
    num_levels = resource.buffer_levels()
    
    level_energy = []
    for level in xrange(num_levels):
        level_energy.append(get_level_cost(resource, point, layer, level))
  
    para_index = [i for i, e in enumerate(resource.paras) if e.access_mode != 0]

    delta = 1
    for index in para_index:
        array_energy = get_array_and_curr_level_cost(resource, point, layer, index+1) - level_energy[index+delta]
        level_energy.insert(index+delta, array_energy)
        delta += 1

    return level_energy      

#FIXME
def get_block_cost(resource, point, layer, verbose=False):
    '''
    Get the cost of the given mapping point on given resource.

    If the point is not feasible on the resource, return inf.
    '''
    #TODO include static energy
    num_levels = resource.buffer_levels()

    access_list, array_cost  = get_access(point, layer, resource)
    layer_size = get_layer_size(layer)
    
    total_access_cost = get_total_access_cost(resource, array_cost)
    assert len(total_access_cost) == len(access_list)
  

    block_costs = [0.0, 0.0, 0.0]
    for i in xrange(len(total_access_cost)):
        buffer_access = [a*b for a,b in zip(access_list[i], layer_size)]
        block_cost = [x * total_access_cost[i] for x in buffer_access]
        block_costs = map(add, block_cost, block_costs)

    if verbose:
        print 'access_list: ', access_list
        bank_size_list, block_size_list = get_block_sizes(num_levels, point, layer)
        print 'bank_size_list: ', bank_size_list 
        print 'block_size_list: ', block_size_list
        print 'layer_size: ', layer_size
        print 'block costs: ', block_costs

    return block_costs

def get_cost(resource, point, layer, verbose=False):
    '''
    Get the cost of the given mapping point on given resource.

    If the point is not feasible on the resource, return inf.
    '''
    #TODO include static energy
    #TODO support other access_mode
    num_levels = resource.buffer_levels()
    assert len(point.loop_blockings[0]) == num_levels, \
    "number of blockings does not match with number of memory " \
    "levels: %d" % num_levels 

    access_list, array_cost  = get_access(point, layer, resource)
    layer_size = get_layer_size(layer)

    total_access_cost = get_total_access_cost(resource, array_cost)
    assert len(total_access_cost) == len(access_list)

    total_cost = 0.0
    for i in xrange(len(total_access_cost)):
        ''' List of total access of each buffer at level i'''
        if not isinstance(access_list[i][0], list):
            buffer_access = map(mul, access_list[i], layer_size)
            total_cost += sum(buffer_access) * total_access_cost[i]
        else :
            for j in xrange(len(access_list[i])):
                buffer_access = map(mul, access_list[i][j], layer_size)
                total_cost += sum(buffer_access) * total_access_cost[i][j]   

    if verbose:
        print 'access_cost: ', total_access_cost
        print 'access_list: ', access_list
        bank_size_list, block_size_list = get_block_sizes(num_levels, point, layer)
        print 'bank_size_list: ', bank_size_list 
        print 'block_size_list: ', block_size_list
        print 'layer_size: ', layer_size
        print 'total cost: ', total_cost
   
    return total_cost