Newer
Older
'''
Mapping point generator
Current implementation only supports the blocking factor and
parallelism to be factors of the layer size
'''
import itertools
import copy
from operator import mul
import math
import pickle
from .mapping_point import MappingPoint
from .cache import Cache
from . import cost_model
from . import loop_enum as le
from . import buffer_enum as be
from . import utils
def get_hinted_para(layer, level, hint):
assert hint
hinted_para = 1
if loop in hint:
hinted_loop_para = hint[loop][level][2]
hinted_para *= hinted_loop_para
return hinted_para
def get_hinted_partitioning(level, hint):
hinted_partitioning = []
hinted_para_dim = []
if loop in hint:
hinted_partitioning.append(hint[loop][level][2])
hinted_para_dim.append([loop])
else:
hinted_partitioning.append(1)
return [[hinted_partitioning], [hinted_para_dim]]
def get_fixed_partitioning(num_levels, hint):
'''
Get a prefixed partitioning from hint
Helper function used for developping
'''
return [(1,) * num_levels] * le.NUM
if hint[loop][i]:
partitioning[i] = hint[loop][i][2]
partitioning_list.append(tuple(partitioning))
def get_non_empty_loops(point, num_levels):
'''
non_empty_loops is a list that contains #levels tuples,
each tuple contains the loop whose size is not 1 at this level
'''
blocking = list(zip(*(point.loop_blockings)))
partitioning = list(zip(*(point.loop_partitionings)))
t0 = blocking[i]
t1 = partitioning[i]
non_empty_blocking = [i for i, e in enumerate(t0) if e != 1]
non_empty_partitioning = [i for i, e in enumerate(t1) if e != 1]
non_empty_loop = list(set().union(non_empty_blocking, non_empty_partitioning))
non_empty_loops.append(non_empty_loop)
return non_empty_loops
def get_loop_order(partial_order, non_empty_loops, level):
order_curr_level = [le.NUM - 1] * le.NUM
for i in range(len(non_empty_loops[level])):
order_curr_level[non_empty_loops[level][i]] = partial_order[i]
return order_curr_level
def opt_order_generator_function(point, num_loops, num_levels):
'''
Smart loop_order_list generator.
We need this because the general one can easily generate
more than 10^10 loop orders
We reduce the number of generated loop orders by only
order the loops whose size at current level is not 1
'''
non_empty_loops = get_non_empty_loops(point, num_levels)
# print "non_empty_loops: ", non_empty_loops
all_order_permutations = []
for level in range(num_levels):
one_level_permutations = []
for order in itertools.permutations(range(len(non_empty_loops[level]))):
one_level_permutations.append(get_loop_order(order, non_empty_loops, level))
all_order_permutations.append(one_level_permutations)
for loop_order in itertools.product(*all_order_permutations):
def level_order_generator_function(point, num_loops, non_empty_loops, level):
for order in itertools.permutations(range(len(non_empty_loops[level]))):
yield get_loop_order(order, non_empty_loops, level)
def order_generator_function(num_loops, num_levels):
'''
General loop_order_list generator.
Arguments are number of loop types, number of buffer levels.
'''
'''Generator all possible loop orders in one buffer level'''
one_level_permutations = []
for order in itertools.permutations(range(num_loops)):
one_level_permutations.append(order)
all_order_permutations = []
for level in range(num_levels):
all_order_permutations.append(one_level_permutations)
'''Consider system with all buffer levels, generator all
possible loop orders, then transform the data
organization to match with loop_order_list'''
for order in itertools.product(*all_order_permutations):
def factors(n):
return set(reduce(list.__add__,
([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0)))
for i in range(1, int(n ** 0.5) + 1):
if n % i == 0 and n // i <= end:
l.__iadd__([i, n // i])
elif n % i == 0:
l.__iadd__([i])
s = set(l)
s.remove(1)
def recursive_tile(tile_permutations, curr_loop_tile, n, curr_level, num_level):
if curr_level == num_level - 1:
curr_loop_tile.append(n)
tile_permutations.append(curr_loop_tile)
for i in factors(n):
new_loop_tile = copy.copy(curr_loop_tile)
new_loop_tile.append(i)
recursive_tile(tile_permutations, new_loop_tile, n / i, curr_level + 1, num_level)
def loop_tile_with_para_hint(tile_permutations, loop_extent, num_level, loop_hint):
para_hint = loop_hint[0][2]
# TODO use faster way for this checking
if i >= para_hint:
recursive_tile(tile_permutations, [i], loop_extent / i, 1, num_level)
def loop_tile_with_hint(tile_permutations, loop_extent, num_level, loop_hint):
# TODO support more than 1 level of para hint
if loop_hint[level] != None:
loop_hint_level = level
break
blocking_hint = 1 if loop_hint[loop_hint_level][1] == None else loop_hint[loop_hint_level][1]
assert loop_hint[loop_hint_level][2]
# para_hint = 1 if loop_hint[loop_hint_level][2] == None else loop_hint[loop_hint_level][2]
pre_tile_permutations = []
if loop_hint_level == 0:
else:
for sub_extent in factors((loop_extent + blocking_factor - 1) // blocking_factor):
recursive_tile(pre_tile_permutations, [], sub_extent, 0, loop_hint_level)
# TODO support not fixed blocking hint
if loop_hint[loop_hint_level][1]:
pre_tile.append(blocking_factor)
blocking_accum = reduce(mul, pre_tile, 1)
recursive_tile(tile_permutations, pre_tile, (loop_extent + blocking_accum - 1) // blocking_accum,
loop_hint_level + 1, num_level)
for i in factors((loop_extent + blocking_accum - 1) // blocking_accum):
new_pre_tile = copy.copy(pre_tile)
new_pre_tile.append(i)
new_blocking_accum = blocking_accum * i
recursive_tile(tile_permutations, new_pre_tile,
(loop_extent + new_blocking_accum - 1) // new_blocking_accum, loop_hint_level + 1,
num_level)
def loop_tile(loop_extent, num_level, loop_hint=None):
tile_permutations = []
if not loop_hint:
recursive_tile(tile_permutations, [], loop_extent, 0, num_level)
else:
loop_tile_with_hint(tile_permutations, loop_extent, num_level, loop_hint)
return tile_permutations
def opt_valid_blocking(blocking_cache, resource, layer, blocking):
num_levels = resource.buffer_levels()
blocking_tuple = list(zip(*blocking))
dummy_partitioning = [(1,) * num_levels] * le.NUM
dummy_mapping_point = MappingPoint(None, list(blocking), dummy_partitioning)
'''
level = 0
value_in_cache = blocking_cache.read_cache(level, blocking_tuple[level])
if value_in_cache == None:
valid = cost_model.valid_blocking_size_current_level(resource, dummy_mapping_point, layer, level)
blocking_cache.write_cache(level, blocking_tuple[level], valid)
else:
valid = value_in_cache
if not valid:
return False
for level in range(1, num_levels):
if not cost_model.valid_blocking_size_current_level(resource, dummy_mapping_point, layer, level):
return False
return True
def blocking_generator_function(resource, layer, schedule=None, verbose=False):
'''
Generate all possible loop tilings for each loop,
store them in one list.
'''
hint = schedule.schedule_hint if schedule != None else None
num_levels = resource.buffer_levels()
all_tile_permutations = []
loop_hint = hint[i] if hint and i in hint else None
all_tile_permutations.append(loop_tile(layer.sizes[i], num_levels, loop_hint))
'''
Generate all possible loop tilings for all loops,
then transform the data organizations to match with loop_blocking_list
Use cache to buffer the valid status of blocking for the first level
'''
blocking_cache = Cache(1, 100)
for tile in itertools.product(*all_tile_permutations):
# TODO here the generated is a list of lists, not a list of tuples
# if cost_model.valid_blocking_size(resource, dummy_mapping_point, layer):
if opt_valid_blocking(blocking_cache, resource, layer, tile):
yield list(tile)
def current_level_recursive_partition_blocking_with_hint(para_permutation, slb, slp, cur_loop, cur_factor, para_count,
hint, level, para_loops):
p = hint[cur_loop][level][2] if hint[cur_loop][level][2] else 1
if cur_loop == le.NUM - 1:
if cur_factor <= slb[le.NUM - 1]:
slp.append(cur_factor)
para_permutation.append(slp)
return
cur_loop_in_para_loops = False
if para_loops != None:
cur_loop_in_para_loops = cur_loop in para_loops
if cur_loop_in_para_loops:
for f in list(factors(cur_factor)):
if f * p <= slb[cur_loop]:
new_slp.append(f * p) # TODO not exact divide case
current_level_recursive_partition_blocking_with_hint(para_permutation, slb, new_slp,
cur_loop + 1, cur_factor / f, para_count, hint,
level, para_loops)
current_level_recursive_partition_blocking_with_hint(para_permutation, slb, new_slp,
cur_loop + 1, cur_factor, para_count, hint, level,
para_loops)
def current_level_partition_blocking_1d_no_replication(loop_tiles, slb, para_count, layer):
para_permutation = []
para_dim_permutation = []
if f0 <= para_count: # and 2*f0 > para_count:
para_permutation.append(slp)
para_dim_permutation.append([para_index])
return [para_permutation, para_dim_permutation]
def current_level_partition_blocking_1d_replication(loop_tiles, slb, para_count, layer, u_threshold):
para_permutation = []
para_dim_permutation = []
if f0 <= para_count and f0 >= para_count * u_threshold:
para_permutation.append(slp)
para_dim_permutation.append([para_index])
else:
if f1 * f0 >= para_count * u_threshold and f1 * f0 <= para_count:
new_slp = copy.copy(slp)
new_slp[l1] = f1
para_permutation.append(new_slp)
new_para_index = copy.copy(para_index)
new_para_index.append(l1)
para_dim_permutation.append([new_para_index])
return [para_permutation, para_dim_permutation]
def current_level_partition_blocking_1d(loop_tiles, slb, para_count, layer, u_threshold, replication):
if replication:
return current_level_partition_blocking_1d_replication(loop_tiles, slb, para_count, layer, u_threshold)
return current_level_partition_blocking_1d_no_replication(loop_tiles, slb, para_count, layer)
def current_level_partition_blocking_1d_with_hint(loop_tiles, slb, para_count, layer, level, cur_loop, schedule,
u_threshold):
hint = schedule.schedule_hint
partition_loops = schedule.partition_loops
para_permutation = []
para_dim_permutation = []
cur_para_factor = hint[cur_loop][level][2]
slp[cur_loop] = cur_para_factor
para_index = [cur_loop]
para_permutation.append(slp)
para_dim_permutation.append([para_index])
return [para_permutation, para_dim_permutation]
for l0 in partition_loops:
if l0 == cur_loop:
for f in loop_tiles[cur_loop]:
if f * cur_para_factor >= para_count * u_threshold and f * cur_para_factor <= para_count:
slp = [1, ] * le.NUM
slp[cur_loop] = f * cur_para_factor
para_index = [cur_loop]
para_permutation.append(slp)
para_dim_permutation.append([para_index])
if f * cur_para_factor >= para_count * u_threshold and f * cur_para_factor <= para_count:
slp = [1, ] * le.NUM
slp[cur_loop] = cur_para_factor
slp[l0] = f
para_index = [cur_loop, l0]
para_permutation.append(slp)
para_dim_permutation.append([para_index])
para_index = [l0, cur_loop]
para_permutation.append(slp)
para_dim_permutation.append([para_index])
return [para_permutation, para_dim_permutation]
def para_index_generator_function(para_index_perm_1d):
for e in itertools.combinations(para_index_perm_1d, 2):
yield e
def para_index_generator_function_with_hint(para_index_perm):
for e in itertools.product(*para_index_perm):
yield e
def current_level_partition_blocking_2d_with_hint(loop_tiles, slb, para_count, layer, level, schedule, u_threshold):
para_permutation = []
para_dim_permutation = []
para_perm_1d0, para_index_perm_1d0 = current_level_partition_blocking_1d_with_hint(loop_tiles, slb, para_count,
layer, \
level,
schedule.hint_para_index[level][
0], schedule, u_threshold)
para_perm_1d1, para_index_perm_1d1 = current_level_partition_blocking_1d_with_hint(loop_tiles, slb, para_count,
layer, \
level,
schedule.hint_para_index[level][
1], schedule, u_threshold)
para_index_generator = para_index_generator_function_with_hint([para_index_perm_1d0, para_index_perm_1d1])
for slps in itertools.product(*[para_perm_1d0, para_perm_1d1]):
para_index0, para_index1 = next(para_index_generator)
combined_slp = [a * b for a, b in list(zip(slp0, slp1))]
para_permutation.append(combined_slp)
combined_dim = [para_index0[0], para_index1[0]]
para_dim_permutation.append(combined_dim)
return [para_permutation, para_dim_permutation]
def current_level_partition_blocking_2d(loop_tiles, slb, para_count, layer, u_threshold, replication):
para_permutation = []
para_dim_permutation = []
para_perm_1d, para_index_perm_1d = current_level_partition_blocking_1d(loop_tiles, slb, para_count, \
layer, u_threshold, replication)
para_index_generator = para_index_generator_function(para_index_perm_1d)
for slps in itertools.combinations(para_perm_1d, 2):
para_index0, para_index1 = next(para_index_generator)
combined_slp = [a * b for a, b in list(zip(slp0, slp1))]
para_permutation.append(combined_slp)
combined_dim = [para_index0[0], para_index1[0]]
para_dim_permutation.append(combined_dim)
return [para_permutation, para_dim_permutation]
def current_level_partition_blocking(slb, para, layer, u_threshold, replication):
loop_tiles.append(bounded_factor(slb[l], para_count))
# print "loop tile ", loop_tiles
if para.array_dim == 1:
return current_level_partition_blocking_1d(loop_tiles, slb, para_count, layer, u_threshold, replication)
return current_level_partition_blocking_2d(loop_tiles, slb, para_count, layer, u_threshold, replication)
def current_level_partition_blocking_with_hint(slb, para, layer, level, schedule, u_threshold):
para_count = para.array_width
loop_tiles = []
loop_tiles.append(bounded_factor(slb[l], para_count))
# print "loop tile ", loop_tiles
assert len(
schedule.hint_para_index[level]) <= 1, "do not support unrolling more than 2 loops in the schedule hint"
return current_level_partition_blocking_1d_with_hint(loop_tiles, slb, para_count, layer, level,
schedule.hint_para_index[level][0], schedule, u_threshold)
else:
assert len(
schedule.hint_para_index[level]) <= 2, "do not support unrolling more than 2 loops in the schedule hint"
return current_level_partition_blocking_2d_with_hint(loop_tiles, slb, para_count, layer, level, schedule,
u_threshold)
def para_dim_generator_function(para_dim_permutations):
for para_dim in itertools.product(*para_dim_permutations):
yield para_dim
def parallel_blocking_generator_function(lp, resource, layer, schedule=None):
num_level = resource.buffer_levels()
para_permutations = []
para_dim_permutations = []
para_permutations.append([[1] * le.NUM])
para_dim_permutations.append([None])
else:
if schedule == None:
# current_level_recursive_partition_blocking(para_permutation, lp[level], [], 0, para.count, para.count, layer, under_utilized)
para_permutation, para_dim_permutation = current_level_partition_blocking(lp[level], para, layer,
resource.utilization_threshold,
resource.replication)
para_permutations.append(para_permutation)
para_dim_permutations.append(para_dim_permutation)
else:
hinted_para = get_hinted_para(layer, level, schedule.schedule_hint)
assert hinted_para <= para.count, "total parallelism in schedule hint exceeds the maximum parallelism"
if para.count >= hinted_para * 2:
new_para_count = para.count / hinted_para
para_permutation, para_dim_permutation = current_level_partition_blocking_with_hint(lp[level], para,
layer, level,
schedule,
resource.utilization_threshold)
para_permutations.append(para_permutation)
para_dim_permutations.append(para_dim_permutation)
else:
para_permutation, para_dim_permutation = get_hinted_partitioning(level, schedule.schedule_hint)
para_permutations.append(para_permutation)
para_dim_permutations.append(para_dim_permutation)
# print para_permutations
# print para_dim_permutations
para_dim_generator = para_dim_generator_function(para_dim_permutations)
for partition in itertools.product(*para_permutations):
para_dim = next(para_dim_generator)
yield [partition, para_dim]
def blocking_partitioning_generator_function(resource, layer, schedule, verbose=False):
loop_blocking_list and loop_partitioning_list generator.
loop_blocking: [[Total size (temporal+spatial) of Fx @ mem level 0,1,2],[Fy],[OX],[OY],[OC],[IC],[ON]]
loop_blocking_reshape: [(All loops' total size (temporal+spatial) @ mem level 0),(@ level 1),(@ level 2)]
partition: [[All loops' spatial unrolled size @ mem level 0],[@ level 1],[@ level 2]]
para_dim: [[Spatial unrolled loop dimensions @ mem level 0],[@ level 1],[@ level 2]]
partitioned_loop_blocking_reshape: [[All loops' temporal unrolled size @ mem level 0],[@ level 1],[@ level 2]]
blocking_list: [[Temporal unrolled size of Fx @ mem level 0,1,2],[Fy],[OX],[OY],[OC],[IC],[ON]]
partitioning_list: [[Spatial unrolled size of Fx @ mem level 0,1,2],[Fy],[OX],[OY],[OC],[IC],[ON]]
'''
num_level = resource.buffer_levels()
blocking_generator = blocking_generator_function(resource, layer, schedule, verbose)
for loop_blocking in blocking_generator:
print("loop_tilling: ", loop_blocking)
loop_blocking_reshape = list(zip(*loop_blocking))
pb_generator = parallel_blocking_generator_function(loop_blocking_reshape, resource, layer, schedule)
for pi in pb_generator:
partition, para_dim = pi
partitioned_loop_blocking_reshape = []
partitioned_loop_blocking_reshape.append(
[(x + y - 1) // y for x, y in list(zip(loop_blocking_reshape[level], partition[level]))]) # TODO check if using two maps with floordiv is faster
blocking_list = list(zip(*partitioned_loop_blocking_reshape))
partitioning_list = list(zip(*partition))
print("loop_blocking: ", blocking_list)
print("loop_partition: ", partitioning_list)
print("para_dimension: ", para_dim)
dummy_mapping_point = MappingPoint(None, blocking_list, partitioning_list, para_dim)
if cost_model.valid_partitioning(resource, dummy_mapping_point, layer, verbose):
# if cost_model.valid_mapping_point(resource, dummy_mapping_point, layer, verbose):
if verbose == 3:
# else:
# print "invalid"
# print ""
else:
if verbose == 3:
def opt_get_best_loop_order(resource, layer, point, verbose=False):
'''
[HW template right now: systolic array]
[SRAM only talks to the PEs on the edge, most PE will get data from its neighbour PE]
When there is no partitioning (parallelism), the cost of the current level only depends on the current
level loop orders, given the blocking factors. Thus we can leverage this to
find the best loop order for each level individually.
When there is partitioning (parallelism),
the # of times that the paralleled level of memory passing data to its neighbour PE
(corresponding to the energy spent on interconnection, array_cost)
depends on the current level parallelism size & memory access from the above level memory
The lowest level memory access (talk to MAC) only depends on the NN layer size
level access: [input, weight, output] # of element
level order: [fx, fy, ox, oy, oc, ic, on], '0' for innermost loop, '6' for outermost loop / non-existed loop
'''
num_levels = resource.buffer_levels()
best_loop_order = []
blocking = point.loop_blockings
partitioning = point.loop_partitionings
para_dim = point.para_loop_dim
non_empty_loops = get_non_empty_loops(point, num_levels)
for level in range(num_levels):
smallest_cost = float("inf")
# LMEI later, might can speed up the exhaustive order search by identifying symmetrical terms,
# e.g. ox and oy, fx and fx, to remove some similar orders
for curr_level_order in level_order_generator_function(point, le.NUM, non_empty_loops, level):
dummy_loop_order = [[0] * le.NUM] * num_levels
mapping_point = MappingPoint(list(zip(*dummy_loop_order)), blocking, partitioning, para_dim)
if level <= 0 or resource.paras[level - 1].count <= 1 \
or resource.paras[level - 1].access_mode < 1: # don't get it
curr_cost = cost_model.get_level_cost(resource, mapping_point, layer, level, verbose)
else:
curr_cost = cost_model.get_array_and_curr_level_cost(resource, mapping_point, layer, level, verbose)
best_curr_level_order = curr_level_order
print("Level", level, "Current order:", curr_level_order, " Best order:", best_curr_level_order)
print("Level", level, "Current energy:", '%20d' % curr_cost, " Best energy:", '%20d' % smallest_cost)
print("")
# LMEI later, instead of using mac_capacity, we could use 4-level memory model, treat mac_capacity
# as the innermost memory level for output.
break # Here the author thinks the loop order in innermost level doesn't matter, thus break
best_loop_order.append(best_curr_level_order)
best_cost += smallest_cost
return best_cost, list(zip(*best_loop_order))
def opt_mapping_point_generator_function(resource, layer, schedule=None, verbose=False):
'''
Mapping point generator.
Generates a new mapping point each iteration.
'''
num_levels = resource.buffer_levels()
parallel_levels = resource.para_index
ideal_perf = cost_model.get_ideal_performance(layer, resource)
blocking_partitioning_generator = \
blocking_partitioning_generator_function(resource, layer, schedule)
# dummy_partitioning = [(1,) * num_levels] * le.NUM
for blocking_partitioning in blocking_partitioning_generator:
'''
dummy_mapping_point is used to validate the current blocking_partitioning,
and abandon the ones that exceed the buffer size at any level.
Since this validation does not depend on loop_orders, we perform the validation
at this early stage, so that we can avoid generating all the loop orders for
an invalid blocking_partitioning
'''
print("Find best order for schedule: ", blocking_partitioning)
[blocking, partitioning, para_dim] = blocking_partitioning
dummy_mapping_point = MappingPoint(None, blocking, partitioning, para_dim)
# print "blocking_partitioning: ", blocking_partitioning
cost, loop_order = opt_get_best_loop_order(resource, layer, dummy_mapping_point, verbose)
if cost < smallest_cost:
smallest_cost = cost
best_mapping_point = MappingPoint(loop_order, blocking, partitioning, para_dim)
unrolled_loops, utilized = partitioned_loop_string(partitioning, parallel_levels, para_dim)
utilization = get_utilization(utilized, resource)
perf = ideal_perf / utilization
print("best loop order: ", best_mapping_point.loop_orders)
print("Update smallest cost: ", smallest_cost)
print("Update best schedule: ", utils.print_loop_nest(best_mapping_point))
def mapping_point_generator_function(resource, layer, schedule=None, verbose=False):
'''
Mapping point generator.
Generates a new mapping point each iteration.
'''
num_levels = resource.buffer_levels()
blocking_partitioning_generator = \
blocking_partitioning_generator_function(resource, layer, schedule)
for blocking_partitioning in blocking_partitioning_generator:
'''
dummy_mapping_point is used to validate the current blocking_partitioning,
and abandon the ones that exceed the buffer size at any level.
Since this validation does not depend on loop_orders, we perform the validation
at this early stage, so that we can avoid generating all the loop orders for
an invalid blocking_partitioning
'''
[blocking, partitioning] = blocking_partitioning
dummy_mapping_point = MappingPoint(None, blocking, partitioning)
# print "blocking_partitioning: ", blocking_partitioning
if cost_model.valid_mapping_point(resource, dummy_mapping_point, layer, verbose):
# opt_order_generator_function(dummy_mapping_point, le.NUM, num_levels)
order_generator = \
opt_order_generator_function(dummy_mapping_point, le.NUM, num_levels)
for loop_order in order_generator:
mapping_point = MappingPoint(loop_order, \
def partitioned_loop_string(partitioning, parallel_levels, para_dim):
# TODO check for multi-level parallel case
partitioning_reshape = list(zip(*partitioning))
for level in parallel_levels:
for para_idx in para_dim[level]:
res += "("
for loop in para_idx:
e = partitioning_reshape[level][loop]
utilized *= e
res += str(loop)
res += ")"
return [res, utilized]
def get_utilization(utilized, resource):
# for i in range(len(partitioning)):
# utilized *= reduce(mul, partitioning[i], 1)
total = resource.total_parallelism()
return utilized * 1.0 / total
def dataflow_exploration(resource, layer, file_name, verbose=False):
'''
Dataflow exploration.
Generates a table, with unrolled loops being keys, the best energy (and utilization)
being the values.
'''
dataflow_tb = {}
num_levels = resource.buffer_levels()
parallel_levels = resource.para_index
blocking_partitioning_generator = \
blocking_partitioning_generator_function(resource, layer, None)
# dummy_partitioning = [(1,) * num_levels] * le.NUM
for blocking_partitioning in blocking_partitioning_generator:
'''
dummy_mapping_point is used to validate the current blocking_partitioning,
and abandon the ones that exceed the buffer size at any level.
Since this validation does not depend on loop_orders, we perform the validation
at this early stage, so that we can avoid generating all the loop orders for
an invalid blocking_partitioning
'''
print("Find best order for schedule: ", blocking_partitioning)
[blocking, partitioning, para_dim] = blocking_partitioning
dummy_mapping_point = MappingPoint(None, blocking, partitioning, para_dim)
# print "partitioning: ", partitioning
unrolled_loops, utilized = partitioned_loop_string(partitioning, parallel_levels, para_dim)
utilization = get_utilization(utilized, resource)
if resource.replication and utilization < resource.utilization_threshold:
continue
cost, loop_order = opt_get_best_loop_order(resource, layer, dummy_mapping_point, verbose)
if unrolled_loops not in dataflow_tb or dataflow_tb[unrolled_loops][0] > cost:
best_mapping_point = MappingPoint(loop_order, blocking, partitioning, para_dim)
dataflow_tb[unrolled_loops] = (cost, utilization, best_mapping_point) # TODO utilization
print("unrolled loops: ", unrolled_loops, " with utilization ", utilization)
# print "best loop order: ", best_mapping_point.loop_orders
print("blocking: ", blocking)
print("partitioning: ", partitioning)
print("Update smallest cost: ", dataflow_tb[unrolled_loops][0])
# print "Update best shedule: ", utils.print_loop_nest(best_mapping_point)
# assert best_mapping_point, "No valid mapping point found."
pickle_file_name = file_name + ".pickle"
pickle.dump(dataflow_tb, open(pickle_file_name, "wb"))