Skip to content
Snippets Groups Projects
Commit e36b81ea authored by Toren Lev Fronsdal's avatar Toren Lev Fronsdal
Browse files

Initial commit

parents
No related branches found
No related tags found
No related merge requests found
# %% [code]
#######################
### Library imports ###
#######################
# standard library
import os
import sys
import pickle
import copy
# data packages
import numpy as np
import pandas as pd
# pytorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# sklearn
import sklearn.base
from sklearn.decomposition import PCA
import joblib
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import OneHotEncoder
from sklearn.decomposition import PCA
from sklearn.pipeline import make_union, make_pipeline
from sklearn.compose import make_column_transformer
from scipy.stats import kurtosis, skew
########################
### Global variables ###
########################
weight_method = None # one of {"inverse freq", "square root"}
max_weight = None
n_seeds = 2
n_folds = 2
# if holdout_set == True, then a holdout set of the train data
# is used as the test set instead of the leaderboard data
holdout_set = False
split_method = "grouped" # method : one of {"grouped", "target stratified"}
device = ("cuda" if torch.cuda.is_available() else "cpu")
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# %% [code]
class Preprocessor(TransformerMixin):
def __init__(
self,
variance_threshold = 0.7,
num_pc_genes = 80,
num_pc_cells = 10,
seed = 2021
):
self.variance_threshold = variance_threshold,
self.num_pc_genes = num_pc_genes
self.num_pc_cells = num_pc_cells
self.seed = seed
def fit(self, X, y = None, X_test = None):
if X_test is not None:
X = pd.concat([X, X_test], axis = 0, ignore_index = True)
gene_feats = [col for col in X.columns if col.startswith('g-')]
cell_feats = [col for col in X.columns if col.startswith('c-')]
numeric_feats = gene_feats+cell_feats
categorical_feats = ['cp_time', 'cp_dose']
self._transformer = make_column_transformer(
(OneHotEncoder(), categorical_feats)
)
self._transformer.fit(X)
return self
def transform(self, X):
X_new = self._transformer.transform(X).astype("float32")
return X_new
# %% [code]
# Sub-class nn.Sequential to add reset_parameters method
class Sequential(nn.Sequential):
def reset_parameters(self):
for layer in self.children():
if hasattr(layer, "reset_parameters"):
layer.reset_parameters()
# %% [code]
class Network(sklearn.base.BaseEstimator):
"""An sklearn-compatible wrapper for pytorch estimators.
Wraps pytorch training and prediction in sklearn-compatible estimator with `fit` and
`predict` methods and limited support for commonly-tuned net parameters. Supports
early stopping and `eval_set` similarly to the LightGBM sklearn implementation.
Parameters
----------
net_obj : obj
The instantiated pytorch network object to be used in training. Should have type
that is a subclass of nn.Module.
seed : int, optional
Seed to be used for randomness in network initalization for reproducibility.
optimizer : type, optional, default=torch.optim.Adam
The optimizer class to be used in training. Should be a subclass of
torch.optim.Optimizer.
loss_fn : callable, optional, default=nn.BCEWithLogitsLoss()
A function or callable loss object with signature `f(y_pred, y_true)`.
device : {"cpu", "cuda"}, optional, default="cpu"
The device used in training.
lr : float, optional, default=0.001
The learning rate. Ignored if `lr_scheduler` is provided.
weight_decay : float, optional, default=0
Weight decay parameter used for network weight regularization.
batch_size : int, optional, default=128
Batch sized used in training.
max_epochs : int, optional, default=10
Maximum number of epochs used in training. Actual number of epochs used may be
lower if early stopping is enabled.
lr_scheduler : type, optional
Learning rate scheduler for training, e.g. a class from
torch.optim.lr_scheduler.
lr_scheduler_params : dict, optional
The parameters used to initialize the `lr_scheduler`.
Attributes
----------
self.metric_history_ : list of dict
A list of dictionaries recording the values for each metric, eval_set, and
epoch.
self.early_stopping_history_ : list of float
The list of values for only the first metric and eval_set, used for early
stopping if specified.
self.early_stopping_epoch_ : int or None
The optimal epoch chosen by early stopping.
self.net_ : obj
The trained `net_obj`, which is used for prediction.
self.metric_history_df_ : pd.DataFrame
A dataframe wrapper around `self.metric_history_`.
"""
def __init__(
self,
net_obj,
seed=None,
optimizer=torch.optim.Adam,
loss_fn=None,
device="cpu",
lr=0.001,
weight_decay=0,
batch_size=128,
max_epochs=10,
lr_scheduler=None,
lr_scheduler_params=None,
):
self.net_obj = net_obj
self.seed = seed
self.optimizer = optimizer
self.loss_fn = loss_fn
self.device = device
self.lr = lr
self.weight_decay = weight_decay
self.batch_size = batch_size
self.max_epochs = max_epochs
self.lr_scheduler = lr_scheduler
self.lr_scheduler_params = lr_scheduler_params
def fit(
self,
X,
y,
eval_set=None,
eval_names=None,
eval_metric=None,
patience=None,
min_delta=None,
verbose=False,
):
"""Trains the network, with support for early stopping.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The training features.
y : array-like, shape (n_samples, n_labels)
The training labels.
eval_set : list of tuple, optional
A list of (X, y) tuples to be used for computing eval loss. At least one
dataset is required for early stopping, in which case the first tuple in the
list is used for early stopping evaluation.
eval_names : list, optional
An optionl list of the same length as `eval_set`, specifying the name of
each dataset.
eval_metric : list of callable, optional
A list of metric functions to be used in evaluation. Loss will be recorded
for all metrics, but only the first metric provided will be used for early
stopping, if enabled. Should have signature `f(y_pred, y_true)`.
patience : int, optional
The number of epochs of increasing loss tested before stopping early. The
number to be tested is reset after every epoch with a decrease in loss. This
parameter may be overridden if `min_delta` is also set.
min_delta : float, optional
The minimum decrease in loss required to continue training. If loss doss not
decrease by more than this value, training will be stopped early and the
stopping epoch will be recorded in the `early_stopping_epoch_` attribute.
verbose : int or bool, optional, default=False
If False, no loss is printed during training. Otherwise, results are printed
after every `verbose` epochs.
Returns
-------
self : obj
Returns the estimator itself, in keeping with sklearn requirements.
"""
# initialize device for training
device = torch.device(self.device)
# set seed for network weight initialization
if self.seed is not None:
torch.manual_seed(self.seed)
# this should be redundant with torch.manual_seed
torch.cuda.manual_seed_all(self.seed)
# send pytorch network to specified device
net = self.net_obj.to(device)
# reset initial parameters for net
net.reset_parameters()
# initialize loss and optimizer
if self.loss_fn is None:
loss_fn = nn.BCEWithLogitsLoss()
else:
loss_fn = self.loss_fn
optimizer = self.optimizer(
net.parameters(), lr=self.lr, weight_decay=self.weight_decay
)
# helper for converting to tensor
def to_tensor(a):
return torch.tensor(a, dtype=torch.float32).to(device)
X_nn = to_tensor(X)
y_nn = to_tensor(y)
# Add extra dimension if y is single dimensional
if len(y_nn.shape) == 1:
y_nn = y_nn.unsqueeze(1)
# set up for evaluation on train/val data
if eval_set is None:
eval_set = []
if eval_metric is None:
eval_metric = []
if eval_names is None:
eval_names = [f"eval_{i}" for i in range(len(eval_set))]
# add train data as an eval set
eval_set.append((X, y))
eval_names.append("train")
# convert eval sets to tensors
eval_set = [(to_tensor(tup[0]), to_tensor(tup[1])) for tup in eval_set]
eval_metric = [
m if isinstance(m, tuple) else (f"metric_{i}", m)
for i, m in enumerate(eval_metric)
]
eval_metric.append(("objective", loss_fn))
# set up dataloader for batches
dataset = torch.utils.data.TensorDataset(X_nn, y_nn)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=self.batch_size, shuffle=True, drop_last=True
)
lr_scheduler = self.lr_scheduler
if self.lr_scheduler_params is None:
lr_scheduler_params = {}
else:
lr_scheduler_params = self.lr_scheduler_params
if lr_scheduler == "OneCycleLR":
one_cycle_lr = optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
epochs=self.max_epochs,
steps_per_epoch=len(dataloader),
**lr_scheduler_params,
)
if lr_scheduler == "ReduceLROnPlateau":
reduce_lr_on_plateau = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer, **lr_scheduler_params
)
# track number of epochs with increasing loss for early stopping
self.metric_history_ = []
self.early_stopping_history_ = []
self.early_stopping_epoch_ = None
min_valmetric = np.inf
increases = 0
best_params = copy.deepcopy(net.state_dict())
for epoch in range(self.max_epochs):
# construct batches
for batch_x, batch_y in dataloader:
net.train()
# zero gradients to start
optimizer.zero_grad()
output = net.forward(batch_x)
loss = loss_fn(output, batch_y)
loss.backward()
optimizer.step()
if lr_scheduler == "OneCycleLR":
one_cycle_lr.step()
net.eval()
# record metrics for each eval set
for i in range(len(eval_set)):
X_val, y_val = eval_set[i]
# Add extra dimension if y is single dimensional
if len(y_val.shape) == 1:
y_val = y_val.unsqueeze(1)
set_name = eval_names[i]
with torch.no_grad():
preds = net(X_val)
for j in range(len(eval_metric)):
metric_name, metric_fn = eval_metric[j]
metric_val = metric_fn(preds, y_val)
if isinstance(metric_val, torch.Tensor):
metric_val = metric_val.item()
row = {
"epoch": epoch,
"data": set_name,
"metric": metric_name,
"value": metric_val,
}
self.metric_history_.append(row)
# use first val set and first metric for early stopping
if i == 0 and j == 0:
self.early_stopping_history_.append(metric_val)
if verbose:
verbose = int(verbose)
if epoch % verbose == 0:
for d in self.metric_history_[-len(eval_set) * len(eval_metric) :]:
print(d)
# if val set is present, record history and follow early stopping parameters
if len(eval_set) > 1:
val_metric = self.early_stopping_history_[-1]
if lr_scheduler == "ReduceLROnPlateau":
reduce_lr_on_plateau.step(val_metric)
# early stopping based on minimum decrease in loss
if min_delta is not None and epoch > 0:
if self.early_stopping_history_[-2] - val_metric < min_delta:
print("Early stopping at epoch ", epoch)
self.early_stopping_epoch_ = epoch
break
# early stopping based on number of epochs with increasing loss
if val_metric < min_valmetric:
min_valmetric = val_metric
increases = 0
# save model paramaters for current best epoch
best_params = copy.deepcopy(net.state_dict())
elif patience is not None:
increases += 1
if increases > patience:
print("Early stopping at epoch ", epoch)
self.early_stopping_epoch_ = epoch
break
# if using early stopping, reload net with best params
if patience is not None or min_delta is not None:
# load model paramaters from best epoch
net.load_state_dict(best_params)
net.eval()
# store network for prediction
self.net_ = net
self.metric_history_df_ = pd.DataFrame(self.metric_history_)
return self
def predict(self, X):
"""Predicts using the trained network.
Parameters
----------
X : array-like, shape (n_samples, n_features)
An array of the same shape as the one used in training, containing the data
to be used for predictions.
Returns
-------
np.array
Model predictions in an array of shape (n_samples, n_labels).
"""
# cast to tensor and move to device
device = torch.device(self.device)
X_nn = torch.tensor(X, dtype=torch.float32).to(device)
# forward pass through network for predictions
# return predictions as numpy array
with torch.no_grad():
return self.net_(X_nn).cpu().detach().numpy().astype("float32")
def predict_proba(self, X):
"""Return predictions on probability scale for classification network.
Parameters
----------
X : array-like, shape (n_samples, n_features)
An array of the same shape as the one used in training, containing the data
to be used for predictions.
Returns
-------
np.array
Model predictions in an array of shape (n_samples, n_labels), with sigmoid
transformation applied (i.e. predicted probabilities).
"""
preds = self.predict(X)
preds_proba = 1 / (1 + np.exp(-preds))
return preds_proba.astype("float32")
# %% [code]
class SmoothCrossEntropyLoss(nn.modules.loss._WeightedLoss):
"""
Computes smoothed cross entropy (log) loss.
Label smoothing works by clipping the true label values based on a
specified smoothing parameter, e.g., with smoothing == 0.001 and n_classes == 2,
[0, 1] --> [0.005, 0.995].
The formula is given by label smoothed y = y * (1 - smoothing) + smoothing / n_classes
This method can help prevent models from becoming over-confident.
See paper: https://papers.nips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
"""
def __init__(self, weight=None, reduction="mean", smoothing=0.001, device="cpu"):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.device = device
@staticmethod
def _smooth(targets, n_classes, smoothing, device):
"""Helper for computing smoothed label values."""
assert 0 <= smoothing <= 1
with torch.no_grad():
targets = (
targets * (1 - smoothing)
+ torch.ones_like(targets).to(device) * smoothing / n_classes
)
return targets
def forward(self, inputs, targets, sample_weight=None):
# smooth targets
targets = SmoothCrossEntropyLoss()._smooth(
targets, 2, self.smoothing, self.device
)
# weight class predictions
if self.weight is not None:
inputs = inputs * self.weight.unsqueeze(0)
if sample_weight is None:
# binary_cross_entropy_with_logits returns mean log loss
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="mean")
else:
# binary_cross_entropy_with_logits returns
# [# obs., # classes] tensor of log losses
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
assert loss.size(0) == sample_weight.size(0)
# compute weighted mean for each target
loss = torch.sum(loss * sample_weight, dim=0) / torch.sum(sample_weight)
# compute column-wise mean
loss = torch.mean(loss)
return loss
class ClippedCrossEntropyLoss(nn.modules.loss._WeightedLoss):
"""
Computes clipped cross entropy (log) loss.
Clipped log loss clips the predicted probabilities based on a specified smoothing
parameter, e.g., with smoothing == 0.001, the predicted probabilities [.000013, .99992]
--> [0.005, 0.995].
This method can help prevent models from becoming over-confident.
"""
def __init__(self, weight=None, reduction="mean", smoothing=0.001):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
def forward(self, y_pred, y_true, sample_weight=None):
# clip predictions
y_pred_clipped = torch.clamp(
torch.sigmoid(y_pred), self.smoothing, 1 - self.smoothing
)
# weight class predictions
if self.weight is not None:
y_pred = y_pred * self.weight.unsqueeze(0)
if sample_weight is None:
# binary_cross_entropy returns mean log loss
loss = F.binary_cross_entropy(y_pred_clipped, y_true, reduction="mean")
else:
# binary_cross_entropy returns [# obs., # classes] tensor of log losses
loss = F.binary_cross_entropy(y_pred_clipped, y_true, reduction="none")
assert loss.size(0) == sample_weight.size(0)
# compute weighted mean for each target
loss = torch.sum(loss * sample_weight, dim=0) / torch.sum(sample_weight)
# compute mean across targets
loss = torch.mean(loss)
return loss
# %% [code]
###################
### Import Data ###
###################
train_drug = pd.read_csv("../input/lish-moa/train_drug.csv")
X = pd.read_csv("../input/lish-moa/train_features.csv")
y = pd.read_csv("../input/lish-moa/train_targets_scored.csv")
X_test = pd.read_csv("../input/lish-moa/test_features.csv")
submission = pd.read_csv("../input/lish-moa/sample_submission.csv")
# Remove control observations
y = y.loc[X["cp_type"]=="trt_cp"].reset_index(drop=True)
X = X.loc[X["cp_type"]=="trt_cp"].reset_index(drop=True)
# used to set control obs. to zero for preds
X_test_copy = X_test.copy()
# %% [code]
transformer = Preprocessor()
transformer.fit(X)
X = transformer.transform(X)
y = y.drop(["sig_id"], axis = 1).values.astype("float32")
# %% [code]
n_input = X.shape[1]
n_output = y.shape[1]
hidden_units = 640
dropout = 0.2
net_obj = Sequential(
nn.BatchNorm1d(n_input),
nn.Dropout(dropout),
nn.Linear(n_input, hidden_units),
nn.ReLU(),
nn.BatchNorm1d(hidden_units),
nn.Dropout(dropout),
nn.Linear(hidden_units, hidden_units),
nn.ReLU(),
nn.BatchNorm1d(hidden_units),
nn.Dropout(dropout),
nn.Linear(hidden_units, n_output)
)
# %% [code]
# zero the submission preds
submission.iloc[:,1:207] = 0
net = Network(
net_obj=net_obj,
max_epochs=6,
batch_size=128,
device=device,
loss_fn=SmoothCrossEntropyLoss(smoothing=0.001, device=device),
lr=0.001,
weight_decay=1e-6,
lr_scheduler="ReduceLROnPlateau"
)
clipped_log_loss = ClippedCrossEntropyLoss(smoothing=0.001)
net.fit(
X=X,
y=y,
eval_metric=[clipped_log_loss],
patience=7,
verbose=2
)
net.predict_proba(X)
# %% [code]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment