''' Cost model. ''' #import numpy as np from operator import mul from operator import add from functools import reduce import copy import math from . import loop_enum as le from . import buffer_enum as be def get_comp_cost(layer): ''' Compute the total # of MAC computation, it is independent of other optimizations Also it is independent of input size and input/filter stride Total # of computation = OX*OY*IC*OC*ON*FX*FY ''' cost = layer.wofm * layer.hofm * layer.nifm * layer.nofm \ * layer.nimg * layer.wfil * layer.hfil return cost def get_ideal_performance(layer, resource): ''' Compute the ideal runtime in cycles by assuming 100% PE array utilization Ideal # of cycles = Total # of MAC computation / Total # of PEs #LMEI Need to be modified if later when adding precision-scalable PE. # of functional PE will change depending on different precision modes. ''' total_comp = get_comp_cost(layer) number_pe = reduce(mul, resource.para_count_list, 1) runtime = math.ceil(total_comp *1.0 / number_pe) return runtime def get_layer_size(layer): ''' Get size of ifmap, ofmap, filter of the layer #LMEI ifmap_size should be able to calculate based on ofmap_size and input stride(IS) /filter stride(FS) IX = IS*(OX-1) + FS*(FX-1) + 1 wifm = wistd*(wofm-1) + wfstd*(wfil-1) + 1 ''' ifmap_size = layer.wifm * layer.hifm * layer.nifm * layer.nimg ofmap_size = layer.wofm * layer.hofm * layer.nofm * layer.nimg flmap_size = layer.wfil * layer.hfil * layer.nifm * layer.nofm return [ifmap_size, ofmap_size, flmap_size] def get_hinted_para(level, hint): ''' Get the actual total spatial unrolling size from loop schedule ''' assert hint hinted_para = 1 for loop in range(le.NUM): if loop in hint: hinted_loop_para = hint[loop][level][2] hinted_para *= hinted_loop_para return hinted_para def valid_dataflow(resource, hint): ''' Check if the actual spatial unrolling size from loop schedule meets the HW utilization requirement by comparing it with real HW parallelism size * utilization threshold. ''' num_levels = resource.buffer_levels() for level in range(num_levels): if resource.paras[level].count != 1 and \ get_hinted_para(level, hint) < (resource.paras[level].count * resource.utilization_threshold): return False return True def get_if_access(level, point, layer, mac_capacity = 1): ''' Get per element # of access of Input at current level Not accurate because [FX, FY] is not totally irrelevant terms for ifmap.. #LMEI Need to be modified by using the concept of the dataset. ''' if level == 0 and mac_capacity == 0: return layer.wfil * layer.hfil * layer.nofm / (layer.wstd * layer.hstd) ex_order_index = min(point.loop_orders[le.OX][level], point.loop_orders[le.OY][level], point.loop_orders[le.IC][level], point.loop_orders[le.ON][level]) fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index oc_exclusive = point.loop_orders[le.OC][level] < ex_order_index fx_acc = reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) fy_acc = reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) oc_acc = reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) # No loop orders among unrolled loops, they have the same order fx_par = reduce(mul, point.loop_partitionings[le.FX][level:], 1) fy_par = reduce(mul, point.loop_partitionings[le.FY][level:], 1) oc_par = reduce(mul, point.loop_partitionings[le.OC][level:], 1) return fx_acc * fy_acc * oc_acc * fx_par * fy_par * oc_par / (layer.wstd * layer.hstd) def get_of_access(level, point, layer, mac_capacity = 1): ''' Get per element # of access of Output at current level For output: Relevant terms [OX, OY, OC, ON] irrelevant terms [FX, FY, IC] Calculating rule: At lowest mem level (directly talk to MAC), calculate per element access by timing all irrelevant terms [FX, FY, IC] together For the rest higher mem levels, firstly, check if there is stationary possibility (irrelevant loops for filter [FX, FY, IC] are at the innermost position of this level) if there is, exclude the irrelevant loop(s) from the current level's # of per element access computing because they have been taken into account in lower level's # of per element access computing secondly, calculate the current level's # of per element access by multiplying all the irrelevant terms from current level to the highest level including both temporal unrolling part and spatial unrolling part (parallelism). ''' if level == 0 and mac_capacity == 0 : return layer.wfil * layer.hfil * layer.nifm ex_order_index = min(point.loop_orders[le.OX][level], point.loop_orders[le.OY][level], point.loop_orders[le.OC][level], point.loop_orders[le.ON][level]) fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index ic_exclusive = point.loop_orders[le.IC][level] < ex_order_index fx_acc = reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) fy_acc = reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) ic_acc = reduce(mul, point.loop_blockings[le.IC][level+ic_exclusive:], 1) fx_par = reduce(mul, point.loop_partitionings[le.FX][level:], 1) fy_par = reduce(mul, point.loop_partitionings[le.FY][level:], 1) ic_par = reduce(mul, point.loop_partitionings[le.IC][level:], 1) return fx_acc * fy_acc * ic_acc * fx_par * fy_par * ic_par def get_fl_access(level, point, layer, mac_capacity = 1): ''' Get per element # of access of Weight at current level For filter: Relevant terms [FX, FY, IC, OC] irrelevant terms [OX, OY, ON] Calculating rule: At lowest mem level (directly talk to MAC), calculate per element access by timing all irrelevant terms [OX, OY, ON] together For the rest higher mem levels, firstly, check if there is stationary possibility (irrelevant loops for filter [OX, OY, ON] are at the innermost position of this level) if there is, exclude the irrelevant loop(s) from the current level's # of per element access computing because they have been taken into account in lower level's # of per element access computing secondly, calculate the current level's # of per element access by multiplying all the irrelevant terms from current level to the highest level including both temporal unrolling part and spatial unrolling part (parallelism). ''' if level == 0 and mac_capacity == 0: return layer.wofm * layer.hofm * layer.nimg ex_order_index = min(point.loop_orders[le.FX][level], point.loop_orders[le.FY][level], point.loop_orders[le.IC][level], point.loop_orders[le.OC][level]) ox_exclusive = point.loop_orders[le.OX][level] < ex_order_index oy_exclusive = point.loop_orders[le.OY][level] < ex_order_index on_exclusive = point.loop_orders[le.ON][level] < ex_order_index ox_acc = reduce(mul, point.loop_blockings[le.OX][level+ox_exclusive:], 1) oy_acc = reduce(mul, point.loop_blockings[le.OY][level+oy_exclusive:], 1) on_acc = reduce(mul, point.loop_blockings[le.ON][level+on_exclusive:], 1) ox_par = reduce(mul, point.loop_partitionings[le.OX][level:], 1) oy_par = reduce(mul, point.loop_partitionings[le.OY][level:], 1) on_par = reduce(mul, point.loop_partitionings[le.ON][level:], 1) return ox_acc * oy_acc * on_acc * ox_par * oy_par * on_par def opt_get_if_access(level, point, ba_arr, pa_arr): ''' Get # access of if block at current level The repeated access to ifmap is determined by the blocking factors and parallelism counts of those loops other than ifmap-related loops outside of this level. At the same buffer level, if the other loops are outside of the innermost loop of ifmap-related loops, their blocking factors and parallelism counts at this level should also contribute to the number of accesses. ''' ex_order_index = min(point.loop_orders[le.OX][level], point.loop_orders[le.OY][level], point.loop_orders[le.IC][level], point.loop_orders[le.ON][level]) fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index oc_exclusive = point.loop_orders[le.OC][level] < ex_order_index fx_acc = ba_arr[le.FX][level+fx_exclusive] #reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) fy_acc = ba_arr[le.FY][level+fy_exclusive] #reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) oc_acc = ba_arr[le.OC][level+oc_exclusive] #reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) fx_par = pa_arr[le.FX][level] #reduce(mul, point.loop_partitionings[le.FX][level+fx_exclusive:], 1) fy_par = pa_arr[le.FY][level] #reduce(mul, point.loop_partitionings[le.FY][level+fy_exclusive:], 1) oc_par = pa_arr[le.OC][level] #reduce(mul, point.loop_partitionings[le.OC][level+oc_exclusive:], 1) return fx_acc * fy_acc * oc_acc * fx_par * fy_par * oc_par def opt_get_of_access(level, point, ba_arr, pa_arr): ''' Get # access of of block at current level See comments in routine for ifmap. ''' ex_order_index = min(point.loop_orders[le.OX][level], point.loop_orders[le.OY][level], point.loop_orders[le.OC][level], point.loop_orders[le.ON][level]) fx_exclusive = point.loop_orders[le.FX][level] < ex_order_index fy_exclusive = point.loop_orders[le.FY][level] < ex_order_index ic_exclusive = point.loop_orders[le.IC][level] < ex_order_index #TODO fx_acc = ba_arr[le.FX][level+fx_exclusive] #reduce(mul, point.loop_blockings[le.FX][level+fx_exclusive:], 1) fy_acc = ba_arr[le.FY][level+fy_exclusive] #reduce(mul, point.loop_blockings[le.FY][level+fy_exclusive:], 1) ic_acc = ba_arr[le.IC][level+ic_exclusive] #reduce(mul, point.loop_blockings[le.OC][level+oc_exclusive:], 1) fx_par = pa_arr[le.FX][level] #reduce(mul, point.loop_partitionings[le.FX][level+fx_exclusive:], 1) fy_par = pa_arr[le.FY][level] #reduce(mul, point.loop_partitionings[le.FY][level+fy_exclusive:], 1) ic_par = pa_arr[le.IC][level] #reduce(mul, point.loop_partitionings[le.OC][level+oc_exclusive:], 1) return fx_acc * fy_acc * ic_acc * fx_par * fy_par * ic_par def opt_get_fl_access(level, point, ba_arr, pa_arr): ''' Get # access of fl block at current level See comments in routine for ifmap. ''' ex_order_index = min(point.loop_orders[le.FX][level], point.loop_orders[le.FY][level], point.loop_orders[le.IC][level], point.loop_orders[le.OC][level]) ox_exclusive = point.loop_orders[le.OX][level] < ex_order_index oy_exclusive = point.loop_orders[le.OY][level] < ex_order_index on_exclusive = point.loop_orders[le.ON][level] < ex_order_index ox_acc = ba_arr[le.OX][level+ox_exclusive] #reduce(mul, point.loop_blockings[le.OX][level+ox_exclusive:], 1) oy_acc = ba_arr[le.OY][level+oy_exclusive] #reduce(mul, point.loop_blockings[le.OY][level+oy_exclusive:], 1) on_acc = ba_arr[le.ON][level+on_exclusive] #reduce(mul, point.loop_blockings[le.ON][level+on_exclusive:], 1) ox_par = pa_arr[le.OX][level] #reduce(mul, point.loop_partitionings[le.OX][level+ox_exclusive:], 1) oy_par = pa_arr[le.OY][level] #reduce(mul, point.loop_partitionings[le.OY][level+oy_exclusive:], 1) on_par = pa_arr[le.ON][level] #reduce(mul, point.loop_partitionings[le.ON][level+on_exclusive:], 1) return ox_acc * oy_acc * on_acc * ox_par * oy_par * on_par def get_if_size(blocking_accum_list, partitioning_accum_list, partitioning_list, layer): ''' Get size of if block at current level including both temporal and spatial loop part blocking -> temporal loop part partitioning -> spatial loop part #LMEI to support filter stride(FS) later right now, FS/wfstd = 1 in IX = IS*(OX-1) + FS*(FX-1) + 1 or wifm = wistd*(wofm-1) + wfstd*(wfil-1) + 1 #LMEI (new HW template) no need for Input Duplication when OC partitions by letting one reg broadcast Input to a row of OC partitioned PE and remove inner PE ifamp register ''' fx_acc = blocking_accum_list[le.FX] * partitioning_accum_list[le.FX] fy_acc = blocking_accum_list[le.FY] * partitioning_accum_list[le.FY] ox_acc = blocking_accum_list[le.OX] * partitioning_accum_list[le.OX] oy_acc = blocking_accum_list[le.OY] * partitioning_accum_list[le.OY] width = fx_acc + (ox_acc - 1) * layer.wstd height = fy_acc + (oy_acc - 1) * layer.hstd return width * height * \ blocking_accum_list[le.IC] * partitioning_accum_list[le.IC] * \ blocking_accum_list[le.ON] * partitioning_accum_list[le.ON] * \ partitioning_list[le.OC] # Duplication when OC partitions def get_of_size(blocking_accum_list, partitioning_accum_list, partitioning_list): ''' Get size of of block at current level including both temporal and spatial loop part #LMEI (new HW template) no need for Output Duplication when IC, FX or FY partitions by letting output data from a row of IC, FX or FY partitioned PE add together and remove inner PE ofamp register ''' return blocking_accum_list[le.OX] * partitioning_accum_list[le.OX] * \ blocking_accum_list[le.OY] * partitioning_accum_list[le.OY] * \ blocking_accum_list[le.OC] * partitioning_accum_list[le.OC] * \ blocking_accum_list[le.ON] * partitioning_accum_list[le.ON] * \ partitioning_list[le.IC] * partitioning_list[le.FX] * \ partitioning_list[le.FY] # Duplication when IC, FX or FY partitions def get_fl_size(blocking_accum_list, partitioning_accum_list, partitioning_list): ''' Get size of fl block at current level #LMEI (new HW template) no need for Weight Duplication when OX, OY or ON partitions by letting one reg broadcast Weight to a row of OX, OY or ON partitioned PE and remove inner PE weight register ''' return blocking_accum_list[le.FX] * partitioning_accum_list[le.FX] * \ blocking_accum_list[le.FY] * partitioning_accum_list[le.FY] * \ blocking_accum_list[le.IC] * partitioning_accum_list[le.IC] * \ blocking_accum_list[le.OC] * partitioning_accum_list[le.OC] * \ partitioning_list[le.OX] * partitioning_list[le.OY] *\ partitioning_list[le.ON] # Duplication when OX, OY or ON partitions def get_if_bank_size(blocking_accum_list, layer): ''' Get size of if block at current level blocking -> temporal loop part #LMEI to support filter stride(FS) later right now, FS/wfstd = 1 in IX = IS*(OX-1) + FS*(FX-1) + 1 or wifm = wistd*(wofm-1) + wfstd*(wfil-1) + 1 ''' fx_acc = blocking_accum_list[le.FX] fy_acc = blocking_accum_list[le.FY] ox_acc = blocking_accum_list[le.OX] oy_acc = blocking_accum_list[le.OY] width = fx_acc + (ox_acc - 1) * layer.wstd height = fy_acc + (oy_acc - 1) * layer.hstd return width * height * \ blocking_accum_list[le.IC] * blocking_accum_list[le.ON] def get_of_bank_size(blocking_accum_list): ''' Get size of of block at current level blocking -> temporal loop part ''' return blocking_accum_list[le.OX] * blocking_accum_list[le.OY] * \ blocking_accum_list[le.OC] * blocking_accum_list[le.ON] def get_fl_bank_size(blocking_accum_list): ''' Get size of fl block at current level blocking -> temporal loop part ''' return blocking_accum_list[le.FX] * blocking_accum_list[le.FY] * \ blocking_accum_list[le.IC] * blocking_accum_list[le.OC] def get_array_access_and_cost(level, para, access_list, point): ''' Get the access at array level from the access at the lower level of memory hierarchy ''' para_mode = para.access_mode assert para_mode == 1 or para_mode == 2 # Don't get it array_dim = para.array_dim para_count = para.array_width para_cost = para.array_access_cost * 1.0 nearest_pe_cost = para_cost [if_block_access, of_block_access, fl_block_access] = access_list partitions = list(zip(*point.loop_partitionings))[level] para_dim = point.para_loop_dim[level] partitions_nearest = [1,]*le.NUM partitions_far = [] across_block_cost = [0]*array_dim if para_mode == 1: for i in range(len(para_dim)): para_index = para_dim[i] partitions_far.append([1,]*le.NUM) if len(para_index) == 1: partitions_nearest[para_index[0]] = partitions[para_index[0]] else: inner_loop, outer_loop = para_index partitions_nearest[inner_loop] = partitions[inner_loop] partitions_far[i][outer_loop] = partitions[outer_loop] across_block_cost[i] = para_cost * partitions[inner_loop] array_if_block_access_nearest = if_block_access * partitions_nearest[le.FX] * \ partitions_nearest[le.FY] * partitions_nearest[le.OC] array_of_block_access_nearest = of_block_access * partitions_nearest[le.FX] * \ partitions_nearest[le.FY] * partitions_nearest[le.IC] array_fl_block_access_nearest = fl_block_access * partitions_nearest[le.OX] * \ partitions_nearest[le.OY] * partitions_nearest[le.ON] array_access = [[array_if_block_access_nearest, array_of_block_access_nearest, array_fl_block_access_nearest]] for i in range(array_dim): # Don't get it if_partitions_far = partitions_far[i][le.FX] * partitions_far[i][le.FY] * partitions_far[i][le.OC] if_partitions_far = if_partitions_far if if_partitions_far != 1 else 0 of_partitions_far = partitions_far[i][le.FX] * partitions_far[i][le.FY] * partitions_far[i][le.IC] of_partitions_far = of_partitions_far if of_partitions_far != 1 else 0 fl_partitions_far = partitions_far[i][le.OX] * partitions_far[i][le.OY] * partitions_far[i][le.ON] fl_partitions_far = fl_partitions_far if fl_partitions_far != 1 else 0 if_array_block_access = if_block_access * if_partitions_far of_array_block_access = of_block_access * of_partitions_far fl_array_block_access = fl_block_access * fl_partitions_far array_access.append([if_array_block_access, of_array_block_access, fl_array_block_access]) return [array_access, [nearest_pe_cost] + across_block_cost] elif para_mode == 2: for i in range(len(para_dim)): para_index = para_dim[i] for j in para_index: partitions_nearest[j] = partitions[j] array_if_block_access_nearest = if_block_access * partitions_nearest[le.FX] * \ partitions_nearest[le.FY] * partitions_nearest[le.OC] array_of_block_access_nearest = of_block_access * partitions_nearest[le.FX] * \ partitions_nearest[le.FY] * partitions_nearest[le.IC] array_fl_block_access_nearest = fl_block_access * partitions_nearest[le.OX] * \ partitions_nearest[le.OY] * partitions_nearest[le.ON] array_access = [[array_if_block_access_nearest, array_of_block_access_nearest, array_fl_block_access_nearest]] return [array_access, [nearest_pe_cost]] def get_access(point, layer, resource): ''' Get the total access of each block at each level, return the list as [[if_block_access, of_block_access, fl_block_access], ...]. Assume all the buffers are inclusive, so buffers in lower level appear in higher level as well. For the parallelism case assume read from next memory level, Support more access modes in parallelism case ''' #TODO support more customized memory #TODO more access at overlapped boundary num_levels = resource.buffer_levels() mac_capacity = resource.mac_capacity access_list = [] for level in range(num_levels): if_block_access = get_if_access(level, point, layer, mac_capacity) of_block_access = 2 * get_of_access(level, point, layer, mac_capacity) - 1 fl_block_access = get_fl_access(level, point, layer, mac_capacity) access_list.append([if_block_access, of_block_access, fl_block_access]) #para_mode = [e.access_mode for i, e in enumerate(resource.paras) if e.access_mode != 0] para_mode_level = [i for i, e in enumerate(resource.paras) if e.access_mode != 0] partitions = list(zip(*point.loop_partitionings)) array_costs = [] if para_mode_level: # access at array level #para_mode_level = [i for i, e in enumerate(resource.paras) if e.access_mode != 0] delta = 0 for level in para_mode_level: if level + delta + 1 >= num_levels : next_level_access = [1, 1, 1] else: next_level_access = copy.copy(access_list[level + delta + 1]) next_level_access[1] = (next_level_access[1] + 1)/2 array_access, array_cost = get_array_access_and_cost(level, resource.paras[level], next_level_access, point) array_costs.append(array_cost) access_list.insert(level + delta + 1, array_access) delta += 1 return [access_list, array_costs] def opt_get_access(num_levels, point, mac_capacity): ''' See the above function's comments. This function is just an optimized version of the above function ''' ''' blocking_accum_arr is reversed cumprod numpy array ''' #TODO support mac_capacity #blocking_arr = np.ones((le.NUM, num_levels+1)) #partitioning_arr = np.ones((le.NUM, num_levels+1)) #blocking_arr[:,:-1] = np.array(point.loop_blockings) #partitioning_arr[:,:-1] = np.array(point.loop_partitionings) #blocking_accum_arr = np.ones((le.NUM, num_levels+1)) #partitioning_accum_arr = np.ones((le.NUM, num_levels+1)) #for i in range(le.NUM): # blocking_accum_arr[i][:-1] = np.cumprod(blocking_arr[i][::-1])[::-1] # partitioning_accum_arr[i][:-1] = np.cumprod(partitioning_arr[i][::-1])[::-1] #blocking_accum_arr = blocking_arr[...,::-1].cumprod(axis=-1)[...,::-1] #partitioning_accum_arr = partitioning_arr[...,::-1].cumprod(axis=-1)[...,::-1] #blocking_accum_arr = np.hstack((blocking_accum_arr, np.ones((le.NUM, 1)))) #partitioning_accum_arr = np.hstack((partitioning_accum_arr, np.ones((le.NUM, 1)))) blocking_accum_arr = [] partitioning_accum_arr = [] for i in range(le.NUM): ba_current_level = [1] pa_current_level = [1] ba_tmp = 1 pa_tmp = 1 for level in range(num_levels-1, -1, -1): ba_tmp = ba_tmp * point.loop_blockings[i][level] pa_tmp = pa_tmp * point.loop_partitionings[i][level] ba_current_level.append(ba_tmp) pa_current_level.append(pa_tmp) blocking_accum_arr.append(ba_current_level[::-1]) partitioning_accum_arr.append(pa_current_level[::-1]) access_arr = np.zeros((num_levels, 3)) for level in range(num_levels): access_arr[level][0] = opt_get_if_access(level, point, blocking_accum_arr, partitioning_accum_arr) access_arr[level][1] = 2 * opt_get_of_access(level, point, blocking_accum_arr, partitioning_accum_arr) - 1 access_arr[level][2] = opt_get_fl_access(level, point, blocking_accum_arr, partitioning_accum_arr) return access_arr def get_bank_size(point, layer, level): blocking_accum_list = [] for i in range(le.NUM): blocking_accum_list.append(reduce(mul, point.loop_blocking(i)[:level+1], 1)) if_bank_size = get_if_bank_size(blocking_accum_list, layer) of_bank_size = get_of_bank_size(blocking_accum_list) fl_bank_size = get_fl_bank_size(blocking_accum_list) return (if_bank_size, of_bank_size, fl_bank_size) def get_block_size(point, layer, level): blocking_accum_list = [] partitioning_accum_list = [] partitioning_reshape = list(zip(*point.loop_partitionings)) partitioning_list = partitioning_reshape[level] for i in range(le.NUM): blocking_accum_list.append(reduce(mul, point.loop_blocking(i)[:level+1], 1)) partitioning_accum_list.append(reduce(mul, point.loop_partitioning(i)[:level+1], 1)) #FIXME inclusive mode also duplicates data if_block_size = get_if_size(blocking_accum_list, partitioning_accum_list, partitioning_list, layer) of_block_size = get_of_size(blocking_accum_list, partitioning_accum_list, partitioning_list) fl_block_size = get_fl_size(blocking_accum_list, partitioning_accum_list, partitioning_list) return (if_block_size, of_block_size, fl_block_size) def get_block_sizes(num_levels, point, layer): ''' Get size of ifmap, ofmap, filter ''' bank_list = [] block_list = [] for level in range(num_levels): block_list.append(get_block_size(point, layer, level)) bank_list.append(get_bank_size(point, layer, level)) return [bank_list, block_list] def fit_in_level(cap, blocks, invalid_underutilized, level,memory_partitions): ''' Check if the current level mem size >= current level loop blocking size invalid_underutilized is used to exclude mapping points with too low memory utilization (< 50%) #LMEI can later put the memory utilization threshold as a user defined parameter ''' if type(cap) is list: #I/O/W example: [0,0,1] I is stored in memory 0, O is stored in memory 0, W is stored in memory 1 #leave last empty #memory_partitions = [[0,1, 2],[0,0,1],[0,0,None]] #if 3 level do not contain weights [0, 0, None] #capacity = [[2,2], [30000,30000], [1000000,1000000]] for i in range(len(cap)): indices = [index for index,partition in enumerate(memory_partitions[level]) if partition == i] size = sum([blocks[j] for j in indices]) if size == 0: continue if (size > cap[i]) == True: return False #it does not fit check_if_underutilized = 0 #print level, i, invalid_underutilized, memory_partitions[level+1][i], size, cap[i] if invalid_underutilized: last_layer = [] for mem in indices: last_layer.append(memory_partitions[level+1][mem]) if None not in last_layer: if ((size <= cap[i]) and (2*size <= cap[i])) == True: #if double the size fit then there will be a better to block partition that will utilized all memory, #print "NO level: ", level,"blocks: ", blocks, "size: ", size, "cap: ", cap, "indices: ", indices, "last_layer", last_layer check_if_underutilized += 1 else: test = 1 else: #print "OK level: ", level,"blocks: ", blocks, "size: ", size, "cap: ", cap, "indices: ", indices, "last_layer", last_layer test =2 if check_if_underutilized == len(cap): return False return True else: total_size = sum(blocks) # for size,contain in zip(blocks, contains): # if contain: # total_size += size # total_capacity = 0 # for size,contain in zip(cap, contains): # if contain: # total_capacity += size # total_size = sum(blocks) if invalid_underutilized: return (total_size <= cap) and (2*total_size >= cap) else: return (total_size <= cap) def valid_partition_number(resource, partitioning, level): max_parallelism = resource.parallelism(level).count actual_parallelism = reduce(mul, partitioning[level], 1) return actual_parallelism <= max_parallelism def valid_partitioning_current_level(resource, point, layer, level, verbose=False): valid_size = fit_in_level(resource.buffer(level).capacity, \ get_bank_size(point, layer, level), resource.invalid_underutilized, level,resource.memory_partitions) return valid_size def valid_mapping_point_current_level(resource, point, layer, level, verbose=False): if resource.paras[level].count > 1: valid_size = fit_in_level(resource.buffer(level).capacity, get_bank_size(point, layer, level), resource.invalid_underutilized,level,resource.memory_partitions) else : valid_size = fit_in_level(resource.buffer(level).capacity, get_block_size(point, layer, level), resource.invalid_underutilized,level,resource.memory_partitions) partitioning = list(zip(*(point.loop_partitionings))) valid_para = valid_partition_number(resource, partitioning, level) if verbose == 3: print("Level ", level, ": Partitioned block size fit in bank: ", valid_size) print("Level ", level, ": Partition number is valid: ", valid_para) return valid_size and valid_para def valid_partitioning(resource, point, layer, verbose=False): para_level = resource.para_index for level in para_level: if not valid_partitioning_current_level(resource, point, layer, level, verbose): return False return True def valid_blocking_size_current_level(resource, point, layer, level, verbose=False): if level == resource.buffer_levels()-1: return True if type(resource.buffer(level).capacity) is list: capacity = copy.deepcopy(resource.buffer(level).capacity) for i in range(len(capacity)): capacity[i] =capacity[ i]* resource.paras[level].count return fit_in_level(capacity,get_block_size(point, layer, level), (resource.invalid_underutilized and (level not in resource.para_index)),level,resource.memory_partitions) else: return fit_in_level(resource.buffer(level).capacity * resource.paras[level].count, get_block_size(point, layer, level), (resource.invalid_underutilized and (level not in resource.para_index)),level,resource.memory_partitions) #get_block_size(point, layer, level), (level > min(resource.para_index))) def valid_blocking_size(resource, point, layer, verbose=False): for level in range(resource.buffer_levels()): if not valid_blocking_size_current_level(resource, point, layer, level, verbose): return False return True def valid_mapping_point(resource, point, layer, verbose=False): for i in range(resource.buffer_levels()): if not valid_mapping_point_current_level(resource, point, layer, i, verbose): return False return True def get_total_access_cost(resource, array_cost): total_access_cost = copy.deepcopy(resource.access_cost) if not resource.array_access_cost: return total_access_cost para_index = [i for i, e in enumerate(resource.paras) if e.access_mode != 0] addition_levels = len(para_index) delta = 1 for i in range(addition_levels): index = para_index[i] total_access_cost.insert(index+delta, array_cost[i]) delta += 1 return total_access_cost def get_array_level_cost(resource, point, layer_size, level, next_level_access, verbose=False): ''' Given next_level_access (above-level memory access) calculate the current level (paralleled level) inter-PE data access thus calculate the current level (paralleled level) inter-PE communication energy i.e. the energy spent on interconnection Specific to Systolic Array template. level_access: [[close access for I/O/W],[far access on one dimension for I/O/W],[far access on another dimension]] close access means data are passing from one PE to its neighbour PE Far access means data need to jump from one PE to PEs far away from it. Far jump happens because of dataflow spatial replication (e.g. 2D array -> kinds of 3D array) ''' # TODO add support for other access_mode # don't get it # LMEI to distinguish O (partial sum) in buffer_access from A and W assert resource.paras[level].count and resource.paras[level].access_mode level_access, level_cost = get_array_access_and_cost(level, resource.paras[level], next_level_access, point) total_cost = 0 for i in range(len(level_access)): buffer_access = list(map(mul, level_access[i], layer_size)) total_cost += sum(buffer_access) *level_cost[i] if verbose >= 3: print("Level ", level, " array level access: ", level_access) return total_cost def get_array_and_curr_level_cost(resource, point, layer, level, verbose=False): ''' Get the energy from current level of memory access + inter-PE access ''' # LMEI to distinguish O (partial sum) in buffer_access from A and W layer_size = get_layer_size(layer) mac_capacity = resource.mac_capacity level_access = [get_if_access(level, point, layer, mac_capacity), \ get_of_access(level, point, layer, mac_capacity), \ get_fl_access(level, point, layer, mac_capacity)] [if_access, of_access, fl_access] = level_access buffer_level_access = [if_access, 2*of_access-1, fl_access] total_buffer_access = list(map(mul, buffer_level_access, layer_size)) # level_cost = sum(total_buffer_access) * resource.access_cost[level] level_cost = 0 for i in range(len(total_buffer_access)): index = resource.memory_partitions[level][i] if index is not None: level_cost += total_buffer_access[i] * resource.access_cost[level][index] # operand_costs = [access_cost * num_accesses for access_cost,num_accesses in zip(total_buffer_access,resource.access_cost[level]) ] # level_cost = sum(operand_costs) if verbose >= 3: print("Level ", level, " access: ", buffer_level_access) level_cost += get_array_level_cost(resource, point, layer_size, level-1, level_access, verbose) return level_cost def get_level_cost(resource, point, layer, level, verbose=False): ''' Get the energy from current level of memory access #LMEI to distinguish O (partial sum) in buffer_access from A and W ''' layer_size = get_layer_size(layer) mac_capacity = resource.mac_capacity level_access = [get_if_access(level, point, layer, mac_capacity), \ 2 * get_of_access(level, point, layer, mac_capacity) - 1, \ get_fl_access(level, point, layer, mac_capacity)] buffer_access = list(map(mul, level_access, layer_size)) # Inputs, weights, and outputs may have different costs # level_cost = sum(buffer_access) * resource.access_cost[level] level_cost = 0 for i in range(len(buffer_access)): index = resource.memory_partitions[level][i] if index is not None: level_cost += buffer_access[i] * resource.access_cost[level][index] # resouce.memory_partitions # operand_costs = [access_cost * num_accesses for access_cost,num_accesses in zip(buffer_access,resource.access_cost[level]) ] # level_cost = sum(operand_costs) if verbose >= 3: print("Level", level, " access: ", level_access) return level_cost def get_total_access(resource, point, layer, verbose=False): layer_size = get_layer_size(layer) access_list, array_cost = get_access(point, layer, resource) if verbose >= 3: print("access breakdown: ", access_list) total_level_access = [] for i in range(len(access_list)): ''' List of total access of each buffer at level i''' if not isinstance(access_list[i][0], list): buffer_access = list(map(mul, access_list[i], layer_size)) total_level_access.append(sum(buffer_access)) else : for j in range(len(access_list[i])): buffer_access = list(map(mul, access_list[i][j], layer_size)) total_level_access.append(sum(buffer_access)) return total_level_access def get_level_costs(resource, point, layer, verbose=False): num_levels = resource.buffer_levels() level_energy = [] for level in range(num_levels): level_energy.append(get_level_cost(resource, point, layer, level)) para_index = [i for i, e in enumerate(resource.paras) if e.access_mode != 0] delta = 1 for index in para_index: array_energy = get_array_and_curr_level_cost(resource, point, layer, index+1) - level_energy[index+delta] level_energy.insert(index+delta, array_energy) delta += 1 return level_energy #FIXME def get_block_cost(resource, point, layer, verbose=False): ''' Get the cost of the given mapping point on given resource. If the point is not feasible on the resource, return inf. ''' #TODO include static energy num_levels = resource.buffer_levels() access_list, array_cost = get_access(point, layer, resource) layer_size = get_layer_size(layer) total_access_cost = get_total_access_cost(resource, array_cost) assert len(total_access_cost) == len(access_list) block_costs = [0.0, 0.0, 0.0] for i in range(len(total_access_cost)): buffer_access = [a*b for a,b in list(zip(access_list[i], layer_size))] block_cost = [x * total_access_cost[i] for x in buffer_access] block_costs = list(map(add, block_cost, block_costs)) if verbose: print('access_list: ', access_list) bank_size_list, block_size_list = get_block_sizes(num_levels, point, layer) print('bank_size_list: ', bank_size_list) print('block_size_list: ', block_size_list) print('layer_size: ', layer_size) print('block costs: ', block_costs) return block_costs def get_cost(resource, point, layer, verbose=False): ''' Get the cost of the given mapping point on given resource. If the point is not feasible on the resource, return inf. ''' #TODO include static energy #TODO support other access_mode num_levels = resource.buffer_levels() assert len(point.loop_blockings[0]) == num_levels, \ "number of blockings does not match with number of memory " \ "levels: %d" % num_levels access_list, array_cost = get_access(point, layer, resource) layer_size = get_layer_size(layer) total_access_cost = get_total_access_cost(resource, array_cost) assert len(total_access_cost) == len(access_list) total_cost = 0.0 for i in range(len(total_access_cost)): ''' List of total access of each buffer at level i''' if not isinstance(access_list[i][0], list): buffer_access = list(map(mul, access_list[i], layer_size)) total_cost += (sum(buffer_access) * total_access_cost[i][0]) else : for j in range(len(access_list[i])): buffer_access = list(map(mul, access_list[i][j], layer_size)) total_cost += sum(buffer_access) * total_access_cost[i][j] if verbose: #print("total_access_cost", total_access_cost) #print("access_list", access_list) #print("layer_size",layer_size) idx_adjust = 0 if len(total_access_cost) > 4: idx_adjust = 1 layer_access_cost = total_access_cost[:1 + idx_adjust] + total_access_cost[2 + idx_adjust:] print('16b_Access_Energy_[RegisterFile(s),Buffer,DRAM]_(pJ): \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'\ .format([item[0] for item in layer_access_cost], [item[1] for item in layer_access_cost], [item[2] for item in layer_access_cost])) print('PE_Access_Cost_(pJ): \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'\ .format(total_access_cost[1 + idx_adjust][0], total_access_cost[1 + idx_adjust][1], total_access_cost[1 + idx_adjust][2])) layer_num_access = access_list[:1 + idx_adjust] + access_list[2 + idx_adjust:] print('Tiles_Accessed_from_[RegisterFile(s),Buffer,DRAM]_in_Layer: \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'\ .format([item[0] for item in layer_num_access], [item[1] for item in layer_num_access], [item[2] for item in layer_num_access])) print("Tiles_Accessed_from_[RegisterFile(s),Buffer,DRAM]_PEs_in_Layer: \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}"\ .format(access_list[1 + idx_adjust][0], access_list[1 + idx_adjust][1], access_list[1 + idx_adjust][2])) bank_size_list, block_size_list = get_block_sizes(num_levels, point, layer) #print("bank_size_list", bank_size_list) #print("block_size_list", block_size_list) print('Memory_Bank_Size_List_When_Parallelized/Unrolled_[RegisterFile(s),Buffer,DRAM]_(bytes): \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'\ .format([item[0] for item in bank_size_list], [item[1] for item in bank_size_list], [item[2] for item in bank_size_list])) print('Memory_Block_Size_List_When_NOT_Parallelized/Unrolled_[RegisterFile(s),Buffer,DRAM]_(bytes): \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'\ .format([item[0] for item in block_size_list], [item[1] for item in block_size_list], [item[2] for item in block_size_list])) print('Layer_Size_(number_of_pixels): \n\tifmap: {}\n\tofmap: {}\n\tfilter: {}'.format(layer_size[0], layer_size[1], layer_size[2])) #print('total cost: ', total_cost) #return total_cost return total_cost, total_access_cost, access_list,layer_size